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6 Discrete Valuation Rings 49

1 Introduction

In this course, a ring R is commutative and unital (unless otherwise stated).

Commutative algebra is the basis for algebraic geometry and algebraic number
theory. The course will focus on motivation from algebraic geometry.

Let k be a field, and consider the ring A = k[T1, . . . , Tn] of polynomials in n
variables over k. By convention, uppercase letters will represent indeterminates,
and lowercase letters will represent specific values.

Consider S ⊆ A. Its zero locus in kn is

V(S) = {(x1, . . . , xn) ∈ kn | f(x1, . . . , xn) = 0;∀f ∈ S}.

We say X ⊆ kn is algebraic if X = V(S) for some S ⊆ A.

Let I = (S) be the ideal generated by S. This is the intersection of all ideals
of A containing S, or equivalently the set of linear combinations of elements of
S with coefficients in A. Note that V(I) = V(S).

We wish to study how the algebraic properties of ideals correspond to geometric
properties of algebraic sets, such as dimension, reducibility and local structure.
We focus on the geometry itself in III Algebraic Geometry, but here we use it
as motivation for studying the algebra.

2 Finitely-generated algebras

Consider, as usual, A = k[T1 . . . , Tn], S ⊆ A and X = V(S); let I(X) be the
ideal of functions vanishing on X. We want to understand I(X) in terms of
S, and study the coordinate ring k[X] = k[T1, . . . , Tn]/I(X). Such rings are
(nilpotent-free) examples of finitely-generated k-algebras, objects which gener-
alise polynomial rings by allowing relations between the generators.

2.1 Noetherian rings and Hilbert’s basis theorem

Is there a finite set S0 ⊆ A with V(S0) = V(S)? The answer is in fact yes!
This is a consequence of Hilbert’s basis theorem, which we will meet in a mo-
ment.

Definition 2.1. A ring A is Noetherian if it satisfies the following equivalent
conditions:

1. Every ideal of A is finitely generated.

2. Every ascending chain A1 ⊆ A2 ⊆ . . . of ideals of A stabilises; that is,
the chain is eventually constant. This is known as the ascending chain
condition (ACC).

3. Every nonempty set Σ of ideals of A has a maximal element (with respect
to inclusion).
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Examples 2.2.

1. All fields are Noetherian since their only ideals are (0) and (1).

2. All PIDs are Noetherian by definition.

3. k[T1, T2, . . . ] is not Noetherian as (T1) ⊊ (T1, T2) ⊊ . . . is a nonterminat-
ing ascending chain.

Recall that we can view a B-module M as an abelian group along with a ring
homomorphism φ : B → EndM , where EndM is the ring of group homomor-
phisms (with multiplication being composition). Scalar multiplication is then
given by bm := φ(b)(m). We define algebras in a similar way.

Definition 2.3. Given a ring B, a (unital associative commutative) B-algebra
is a ring A along with a ring homomorphism θ : B → A called the structure
homomorphism; scalar multiplication is given by ba = θ(b)a.

A is then also a B-module, with φ(b)(a) = θ(b)a.

For example, k[T1, . . . , Tn] is a k-algebra via the inclusion θ(x) = x = xT 0
1 . . . T

0
n .

This is then also a k-vector space.

Definition 2.4. A is finitely generated (as an algebra) over B if A is the set
of polynomials over B in some finite generating set {a1 . . . , an} ⊆ A, that is, if

A = spanB{a
e1
1 , . . . a

en
n | ei ≥ 0}.

Equivalently, A is finitely generated over B if it is isomorphic to a quotient of
some polynomial ring B[T1, . . . , Tn].

Theorem 2.5 (Hilbert’s Basis Theorem). Let B be a Noetherian ring. Then
every finitely generated B-algebra is Noetherian.

Proof. Since a quotient of a Noetherian ring is itself Noetherian, it suffices to
show thatB[T1, . . . , Tn] is Noetherian. SinceB[T1, . . . , Tn] ∼= B[T1, . . . , Tn−1][Tn]
are isomorphic as B-algebras, it suffices (by induction) to show that B[T ] is
Noetherian.

Indeed, let a ⊴ B[T ]. For i ∈ N, define

ai = {c0 ∈ B | ∃c1, . . . , ci ∈ B where c0T
i + · · ·+ ciT

0 ∈ a}.

This is the ideal of leading coefficients of degree-i polynomials in a (along with
0). We will construct a finitely generated ideal b with bi = ai for all i.

Since B is Noetherian, the chain a0 ⊆ a1 ⊆ . . . stabilises at m ∈ N, and each
term is finitely generated; write ai = (ai,1, . . . , ai,ni). For 0 ≤ i ≤ m, find
fi,j ∈ a such that fi,j = ai,jT

i + . . . , and take b to be the ideal generated by
the (finitely many) fi,j . By construction, b ⊆ a is a finitely generated ideal with
bi = ai for all i.

If b ⊊ a, take a minimal-degree polynomial f in the complement. By construc-
tion, there exists some g ∈ b with the same degree and leading coefficient as
f ; then f − g ∈ a has strictly smaller degree than f , so f − g ∈ b. But then
f = (f − g) + g ∈ b.#
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2.2 Integral algebras and Noether’s normalisation theo-
rem

Noether’s normalisation theorem classifies finitely-generated algebras. Geomet-
rically, it says the following. Let X ⊆ kn be an algebraic set. Then ∃d ≥ 0
and a surjective polynomial map f : X → kd which has all fibres finite, that
is,

0 < |f−1(y)| <∞ for every y ∈ kd.

The value d will turn out to be the dimension of X.

Definition 2.6. Let A be a B-algebra. Then A is finite over B if A is finitely
generated as a B-module, that is, if A = spanB{a1, . . . , am}.

Examples 2.7.

1. Let L/K be a finite field extension. Then L is a finite K-algebra.

2. Consider A = k[T, T−1] = {
∑b

i=−a ciT
i | a, b ≥ 0; ci ∈ k}. This is (in

particular) a k-algebra, a k[T ]-algebra, and a k[T − T−1]-algebra.

Now, A is not finite as a k-algebra, or even as a k[T ]-algebra, since any
finite subset S has a lower bound on the powers of T that appear in it,
but scalar multiplication by k[T ] can only increase the power of T .

However, A is finite over k[T −T−1]. This is because T 2 = (T −T−1)T +1
and T−1 = T + (T − T−1), so in fact A is generated by {1, T} over this
ring.

Theorem 2.8 (Noether’s normalisation theorem). Let A be a finitely generated
algebra over a field k. Then there is a subalgebra A′ ⊆ A such that A′ ∼=
k[T1, . . . , Td] for some d ≥ 0 and A is finite over A′.

In order to prove this theorem, we need to develop the theory of integral alge-
bras.

Definition 2.9. Let A be a B-algebra. An element x ∈ A is integral over
B if x is the root of a monic polynomial over B. Then A itself is an integral
B-algebra if all its elements are integral over B.

Lemma 2.10. Let C be an n × n matrix over a ring A. Suppose v ∈ An has
Cv = 0. Then (detC)v = 0.

Note that rings can have zero divisors, so this lemma is nontrivial.

For u ∈ An and C ∈Mn(A), write C
(u)
j for C with the jth column replaced by

u.

Proof of Lemma 2.10. Have detC
(Cv)
j = C

(0)
j = 0. Then Cv =

∑n
l=1 coll(C)·vl,

so

0 = detC
(Cv)
j =

n∑
l=1

detC
(coll(c))
j · vl = detC

(colj(c))
j · vj = detC · vj ,

where the other terms vanish as they have two identical columns.

For the next proposition, we need the following notion:
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Definition 2.11. A B-module A is faithful if the only element b ∈ B satisfying
ba = 0 for all a ∈ A is 0.

Proposition 2.12. Let A be a B-algebra. TFAE:

1. A is a finitely generated integral B-algebra.

2. A is generated (as a B-algebra) by a finite set of integral elements.

3. A is finite over B

Proof.
1 =⇒ 2: Clear

2 =⇒ 3: Let α1, . . . , αn ∈ A be integral generators over B. Then there are
some ni ≥ 0 and bi, j ∈ B such that

αni
i + bi,1α

ni−1
i + · · ·+ bi,ni

α0
i = 0,

so, moving the lower-order terms to the other side, have

αni
i ∈ spanB{α0

i , . . . , α
ni−1
i }.

Done by induction.

3 =⇒ 1: A is finitely generated as a B-module, so it is finitely generated as a
B-algebra by the same generators. Fix α ∈ A; it remains to show α is integral
over B.

Indeed, let φ : B → A be the structure homomorphism, and consider the subring
φ(B)[α] ≤ A. Now, A is a finitely-generated B-module, and it is faithful (over
φ(B)[α]) since 1 ∈ A. This immediately implies α is integral over B by the
following lemma.

Lemma 2.13. Let B ≤ A be rings. Then x ∈ A is integral over B iff there is
a B[x]-submodule M of A such that

(i) M is faithful over B[x].

(ii) M is finitely generated over B

Proof. Suppose (i) and (ii) hold. By (ii), M = spanB{e1, . . . , en} for n ≥ 0 and
some ei ∈ A. Write e = (e1, . . . , en)

⊤.

Since xei ∈ spanB{e1, . . . , en}, have xe = Ce for some matrix C ∈ Mn(B).
Then (xI − C)e = 0, so, by the previous lemma, det(xI − C)ei = 0 for each i.
Since the ei generate M , det(xI − C) ∈ B[x] annihilates all of M ; since M is
faithful, in fact det(xI − C) = 0. But this determinant is a monic polynomial
in x with coefficients in B, so in fact x is integral over B.

Conversely, suppose x ∈ A is integral over B. If x satisfies a monic degree-n
polynomial, then M = B[x] = spanB{1, x, . . . , xn−1} easily satisfies (i) and (ii),
since 1 ∈M .

Definition 2.14. Let A be an algebra over a field k. The elements x1, . . . , xn ∈
A are algebraically independent if the only polynomial p ∈ k[T1, . . . , Tn] with
p(x1, . . . , xn) = 0 is the zero polynomial.
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Equivalently, the xi are independent if the k-algebra homomorphism k[T1, . . . , Tn]→
A given by evaluation at the xi is injective.

This definition allows us to restate Noether’s normalisation theorem:

Theorem 2.15 (Noether’s Normalisation Theorem, second version).
Let A be a finitely generated algebra over a field k. Then there exist elements
x1, . . . , xn ∈ A (n ≥ 0), algebraically independent over k, such that A is finite
over A′ = k[x1, . . . , xn].

We will first demonstrate the proof method with an example.

Example 2.16. Let A = k[T, T−1]. We want to prove the theorem in this case.

{T, T−1} are not algebraically independent: have the relation T · T−1 − 1 = 0.
Write A = k[T−1 − cT, T ]; then, using the previous relation, get

0 = ((T−1 − cT ) + cT ) · T − 1 = cT 2 + (T−1 − cT ) · T − 1.

Dividing out by c, have that T is integral over k[T − cT−1] for c ̸= 0. Thus, by
the previous proposition, A = k[T−1 − cT ][T ] is finite over k[T−1 − cT ].

We prove the theorem only in the case where k is infinite.

Proof of Noether’s Normalisation Theorem. Proceed by induction on the (min-
imal) size m of a generating set for A as a k-algebra.

If m = 0, then A = k, so take A′ = A = k.

Now suppose that {x1, . . . , xm} generate A as a k-algebra. If the xi are alge-
braically independent over k, then we are done: again set A′ = A. Otherwise:

Claim: There exist c1, . . . cm−1 ∈ k such that xm is integral over

B = k[x1 − c1xm, . . . , xm−1 − cm−1xm],

which is generated by m− 1 elements.

By the previous proposition, A is finite over B. By induction, take algebraically
independent elements z1, . . . , zd ∈ B such that B is finite over A′ = k[z1, . . . , zd].
By transitivity of finiteness, A is then finite over A′, proving the theorem.

It remains to prove the claim. In fact, almost every choice of constants ci works!

Indeed, let p ∈ k[T1, . . . , Tm] be a nontrivial relation between the xi. Let P be
the highest-degree homogeneous component of p; for scalars c = (c1, . . . , cm−1)
with ci ∈ k, have

g(T1, . . . , Tm) := p(T1 + x1Tm, . . . , Tm−1 + xm−1Tm−1, Tm)

= P (c, 1)T r
m + . . .

:= Q(c)T r
m + . . . ,

expanding in powers of Tm. Then

g(x1 − c1xm, . . . , xm−1 − cm−1xm, xm) = p(x1, . . . , xm) = 0.

6



If the leading coefficient Q(c) is nonzero, then we can divide out by it to get
a monic polynomial over B vanishing at xm, proving the claim. Explicitly, the
polynomial is

1

Q(c)
· g(x1 − c1xm, . . . , xm−1 − cm−1xm, Tm) = T r

m + · · · ∈ B[Tm]

It remains to find ci such that Q(c) ̸= 0. Now, Q ∈ k[T1, . . . , Tm−1] is nonzero:
expanding P in powers of Tm, every coefficient must have a different degree as
P is homogeneous. Since k is infinite, and a nonzero univariate polynomial has
only finitely many roots, there are in fact infinitely many non-roots of Q (by
induction on m).

In fact, we can show that there is a matrix

Q =

1 ∗
. . .

0 1

 ∈Mn(k)

satisfying y = Qx, such that, for some r ≤ m, the entries y1, . . . , yr are al-
gebraically independent and A is finite over k[y1, . . . , yr]. Indeed, almost all
matrices work – the condition is that the entries fail to solve a certain polyno-
mial. This approach works in the case where k is finite, too, but the proof is
omitted here.

2.3 Hilbert’s Nullstellensatz

Let k be a field. We have a bijection

kn
≃←−→ Homk-alg(k[T1, . . . , Tn], k)

x = (x1, . . . , xn) −−→ evx

xf (f(T1), . . . , f(Tn))←−− f

taking the kernel, we get

Homk-alg(k[T1, . . . , Tn], k)
ker−−→ Id(k[T1, . . . , Tn])

evx
ker−−→ (T1 − x1, . . . , Tn − xn)

where Id is the set of ideals. Indeed, given f ∈ k[T1, . . . , Tn], linearly change
variables to (T1−x1, . . . , Tn−xn), and observe that the constant term vanishes
exactly when f(x) does.

Taking mSpec to be the set of maximal ideals, the composition of the two maps
above gives a map

kn
ker evx
↪−−−−→ mSpec k[T1, . . . , Tn]

x −−−−→ (T1 − x1, . . . , Tn − xn).

Since these maximal ideals are determined by the single point at which they
vanish, this map is injective. This map is not in general surjective: over R,
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(T 2 + 1) is a maximal ideal (adjoining a root gives the field C) that does not
have the form (T − x). When k is algebraically closed, however, this map is
surjective, giving a bijection

kn
≃←−−−→

ker evx

mSpec k[T1, . . . , Tn].

This is the content of the (weak) Nullstellensatz.

Consider the vanishing set map V : P(k[T1, . . . , Tn])→ {algebraic subsets of kn}.
On mSpec, V is injective, and its image is the set of singletons. On Id, V is sur-
jective, but fails to be injective: for example, V(T ) = V(T 2) = {0}. However,
we do have a right inverse to V, given by

{algebraic subsets of kn} I−−→ Id k[T1, . . . , Tn]

X −−→ {f ∈ k[T1, . . . , Tn] | f(x) = 0 ∀x ∈ X}

Clearly, V ◦ I = Id. We also have I(V(a)) ⊇ a, but we do not have the reverse
inclusion as V is not injective.

Indeed, let’s consider our earlier example of non-injectivity. We have I(V(T )) =
T , but also I(V(T 2)) = T . It looks like I ◦ V is “taking the root”.

Definition 2.17. Let I ⊴ R be an ideal. Define its radical by
√
I = {x ∈ R |

xk ∈ I for some k ∈ N}. If I =
√
I, I is called a radical ideal.

Lemma 2.18.

(i)
√√

I =
√
I

(ii) Let k be a field, and let a ⊴ k[T1, . . . , Tn]. Then V(
√
a) = V(a).

Proof.

(i) If x ∈
√√

I, then xk ∈
√
I for some k ∈ N, so xkl ∈ I for some l ∈ N.

Hence x ∈
√
I. The other inclusion is trivial.

(ii) Suppose x ∈ V(a), and fix h ∈
√
a. Then hk(x) = 0 for some k ∈ N; since

k[T1, . . . , Tn] is an integral domain, h(x) = 0. Hence x ∈ V(
√
a). Again,

the other inclusion is trivial.

The strong Nullstellensatz then says that, when k is algebraically closed, we
really do have I(V(a)) =

√
a. This yields a bijection

{algebraic subsets of kn} ≃←−−→
V;I

{radical ideals of k[T1, . . . , Tn]}.

We now turn to proving the weak and strong NSS.

Lemma 2.19. Let A ≤ B be rings, and suppose B is integral over A.

(i) A ∩B× = A×.

(ii) Suppose B is an integral domain. Then A is a field iff B is a field.
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Note that, if B is a field, then it is in particular an integral domain.

Proof.

(i) Clearly, A× ⊆ A∩B×. Conversely, suppose a ∈ A∩B× has inverse b ∈ B.
Then there are constants c1, . . . , cn ∈ A such that

bn + c1b
n−1 + · · ·+ cnb

0 = 0.

Multiplying by an−1, get

b+ c1 + c2a+ · · ·+ cna
n−1︸ ︷︷ ︸

∈A

= 0,

so in fact b ∈ A.

(ii) ⇐: Have B× = B \ {0}. By (i), A× = A ∩B× = A ∩B \ {0} = A \ {0}.

⇒: Suppose A is a field, and take b ∈ B \ {0}. Again find a1, . . . , cn ∈ A
(with n minimal) such that

bn + c1b
n−1 + · · ·+ cnb

0 = 0;

then
b (bn−1 + c1b

n−2 + · · ·+ cn−1)︸ ︷︷ ︸
∆

= −cn.

By minimality of n, ∆ ̸= 0; since B is an integral domain, −cn ̸= 0.
Dividing through by −cn, then, we find an inverse for b.

Proposition 2.20 (Zariski’s Lemma). Let k ⊆ L be fields, and suppose L is
finitely generated as a k-algebra. Then L is finite over k.

A more useful restatement is that, if a finitely generated algebra L over a field
k happens to itself be a field, then L is finite over k.

Proof. By Noether’s normalisation theorem, find algebraically independent vari-
ables y1, . . . , yd ∈ L (d ≥ 0) such that L is integral, and therefore finite, over
B = k[y1, . . . , yd].

Since L is a field, by (ii) of the previous lemma B must also be a field. Since
polynomial rings in d ≥ 1 variables are not fields (T1 has no inverse), in fact
d = 0, that is, B = k.

Let p ∈ k[T ]. If we want a finite field extension L/k containing a root of p,
we set L = k[X]/(g), where g is an irreducible factor of p. More abstractly,
all we need is that (g) is a maximal ideal containing (p); then the image of the
indeterminate X still solves p over L.

Now let a ⊴ k[T1, . . . , Tn]. We want a finite extension L of k containing a simul-
taneous solution of all polynomials in a. Analogously, we can take a maximal
ideal m ⊇ a, and set L = k[T1, . . . , Tn]/m. By Zariski’s lemma, this turns out
to work!
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Theorem 2.21 (Weak Nullstellensatz). Let k be a field, and a a proper ideal
of k[T1, . . . , Tn]. Then there is a finite extension L/k and a point x ∈ L such
that f(x) = 0 for all f ∈ a.

In particular, if k is algebraically closed, then the only ideal with empty van-
ishing set is k[T1, . . . , Tn].

Proof. Since k[T1, . . . , Tn] is Noetherian, take a maximal ideal m ⊇ a, and set

L =
k[T1, . . . , Tn]

m
.

Then L is finitely generated as a k-algebra by the Ti+m, so, by Zariski’s lemma,
L/k is finite. Then set x = (T1 +m, . . . , Tn +m); for f ∈ m, have

f(m) = f(T1, . . . , Tm)︸ ︷︷ ︸
∈a⊆m

+m = 0 +m.

Here is another way to view the weak NSS. Let p1, . . . , pm ∈ k[T1, . . . , Tm]. If
there are r1, . . . , rm ∈ k[T1, . . . , Tm] such that∑

i

ripi = 1, (⋆)

then the pi clearly have no common solution in any extension of k. The weak
NSS shows the converse for finitely generated extensions: condition (⋆) is the
only obstruction to the existence of such a solution. Indeed, if (⋆) is not satisfied,
then (pi) is a proper ideal.

We can, in fact, compute the ri (if they exist) for fixed pi. Indeed, we have the
following result.

Theorem 2.22 (Effective Nullstellensatz). If there are no ri with

deg(ri) ≤ (max{3,deg p1, . . . ,deg pm})n

satisfying (⋆), then there are no ri satisfying (⋆) at all.

Proof. Omitted.

Now, the coefficients of
∑

i ripi are linear combinations of the coefficients of the
ri. By the degree bound, we can check if (⋆) has a solution, and find one if it
exists, using Gaussian elimination.

Corollary 2.23 (Corollary of weak NSS). Suppose further that k is algebraically
closed. Then the map

kn
ker evx−−−−→ mSpec k[T1, . . . , Tn]

x −−−−→ (T1 − x1, . . . , Tn − xn).

is a bijection.
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Proof. We remarked earlier that this map is injective. To show surjectivity, fix
a maximal ideal m. By the weak NSS, find x ∈ kn with f(x) = 0 for all f ∈ m.
Then

m ⊆ ker evx = (T1 − x1, . . . , Tn − xn);

by maximality, m = ker evx.

Theorem 2.24 (Strong Nullstellensatz). Let k be a field, kal its algebraic clo-
sure, and a ⊴ k[T1, . . . , Tn]. Define

Val(a) = {x ∈ (kal)n | f(x) = 0 ∀x ∈ a}.

Then I(Val(a)) =
√
a.

Proof. For any X ⊆ kn, we have that I(X) is radical: if hn(x) = 0, then
h(x) = 0. Now, we have I(Val(a)) ⊇ a, and the LHS is radical, so in fact
I(Val(a)) ⊇

√
a.

For the reverse inclusion, fix h ∈ I(Val(a)). If h = 0, then certainly h ∈
√
a.

Suppose h ̸= 0; we want to show that hl ∈ a for some l ∈ N. By Hilbert’s basis
theorem, we have a = (g1, . . . , gm). Consider the ideal

b = (g1, . . . , gm, 1− Y · h) ⊴ k[T1, . . . , Tn, Y ].

Claim: Val(b) = ∅.

Indeed, suppose (x1, . . . , xn, t) solves the gi and 1−Y ·h. Then x ∈ Val(a), and,
h ∈ a, so h(x) = 0. But then 1− t · h(x) = 1 ̸= 0.#

By the weak NSS, b = k[T1, . . . , Tn, Y ] ∋ 1. Find ri ∈ k[T1, . . . , Tn, Y ] such that

(⋆)
∑
i

rigi + rm+1(1− Y h) = 1,

and consider the map

k[T1, . . . , Tn]→ k(T1, . . . , Tn)

Ti → Ti

Y → h−1 (as h ̸= 0)

Applying this map to (⋆), we get

1 =
∑
i

ri(T1, . . . , Tn, h
−1) · gi.

For large enough l, we have that each hl · ri(T1, . . . , Tn, h−1) is, in fact, a poly-
nomial. Thus

hl =
∑
i

hlri(T1, . . . , Tn, h
−1)︸ ︷︷ ︸

∈k[T1,...,Tn]

· gi︸︷︷︸ a ∈ a.

Hence h ∈
√
a.

11



This proof is known as the Rabinowitsch trick ; it is an example of localisation,
which we will meet later.

By the correspondence theorem, the bijection descends to coordinate rings:

{algebraic subsets of V(c)} ≃←−−→
V;I

{radical ideals of k[T1, . . . , Tn]/c}.

This is because radicality is preserved by correspondence.

2.4 The Zariski topology

Definition 2.25. Let k be a field. The Zariski topology on kn is the topology
whose closed sets are the algebraic subsets V(a) of kn. Call kn equipped with
this topology n-dimensional affine space An

k (or just An).

The Zariski topology is indeed a topology:

� kn = V((0)) and ∅ = V((1)).

� V(a) ∪ V(b) = V(a ∩ b) = V(ab).

Indeed, if x /∈ V(a)∪V(b), then there are f ∈ a and g ∈ b with f(x), g(x) ̸=
0. Then fg ∈ ab, but fg(x) ̸= 0, so x /∈ V(ab). The reverse inclusions are
trivial.

�

⋂
i∈I V(ai) = V(

∑
i∈I ai) essentially by definition.

For f ∈ k[T1, . . . , Tn], write D(f) = {x ∈ An
k | f(x) ̸= 0}. The sets D(f) form

a basis for the Zariski topology.

Note that An
k is only Hausdorff if n = 0 or k is finite. Indeed, let U and V be

nonempty open sets in An
k ; find f ∈ U and g ∈ V . If k is infinite and n > 0,

then D(fg) is nonempty. Since D(fg) ⊆ U ∩ V , U meets V .

Definition 2.26. A (nonempty) topological space X is irreducible if it cannot
be written X = X1 ∪X2, where the Xi are closed proper subsets.

Equivalently, X is irreducible iff every pair of nonempty open subsets of X
intersects.

Examples 2.27.

1. A Hausdorff space is irreducible only if it is a singleton.

2. An
k is irreducible for infinite k and n > 0.

3. Suppose k is algebraically closed, and take irreducible polynomials p, q ∈
k[T1, . . . , Tn] with (p) ̸= (q) (in particular, (p) ̸⊆ (q)). Since (p) and (q)
are prime and therefore radical, V((q)) ̸⊆ V((p)) by the strong NSS. By
the same reasoning, V((p)) ̸⊆ V((q)). Then V((pq)) = V((p)) ∪ V((q)) is
not irreducible.

We can in fact check whether V(a) is irreducible algebraically.

Indeed, recall that an ideal I ⊴ R is prime iff R/I is an integral domain, and
that, for ideals, maximal implies prime. We also have that I is radical iff R/I is
reduced (that is, its only nilpotent is 0), and that prime implies radical.

12



Lemma 2.28. Let p ⊴ R be prime. If I ∩J ⊆ p for some I, J ⊴ R, then either
I ⊆ p or J ⊆ p.

Proof. Assume not; take f ∈ I \ p and g ∈ J \ p. Then fg ∈ I ∩J ⊆ p, so either
f ∈ p or g ∈ p by primality.#

Proposition 2.29. An algebraic set X ⊂ An
k is irreducible iff I(X) ⊴ k[T1, . . . , Tn]

is prime.

Proof. Suppose X is irreducible, and take polynomials f, g ∈ k[T1, . . . , Tn] with
fg ∈ I(X). Then X ⊆ V(fg) = V(f) ∪ V(g). By irreducibility, suppose (wlog)
that X ⊆ V(f); then f ∈ I(X). Hence I(X) is prime.

Conversely, suppose that I(X) is prime and that X = V(I) ∪ V(J) = V(IJ).
Then IJ ⊆ I(X), so, by the previous lemma, suppose wlog that I ⊆ I(X).
Then X ⊆ V(I), so X = V(I).

When k is algebraically closed, we have by the strong NSS that V(a) is irre-
ducible iff

√
a is prime. This can fail if k is not algebraically closed.

Example 2.30. Consider the real polynomial p(T1, T2) = T 2
1 + T2(T2 − 1) ∈

R[T1, T2]. Then p is irreducible (in fact, it is irreducible over C) by Gauss’
lemma, so we certainly have that

√
(p) = (p) is prime. However, V((p)) consists

of the two points (0, 0) and (0, 1), and is therefore irreducible.

We want to view the Zariski topology algebraically. First, assume k is alge-
braically closed, and recall that the weak NSS gives a bijection

kn
≃←−→ mSpec k[T1, . . . , Tn]

x −−→ (T1 − x1, . . . , Tn − xn).

Pulling the Zariski topology through this bijection, the closed subsets of mSpec k[T1, . . . , Tn]
are (exactly) those of the form {m | a ⊆ m} for some a ⊴ k[T1, . . . , Tn].

We can generalise this to define a topology on Spec k[T1, . . . , Tn], making the
closed sets those of form {p | a ⊆ p}. Translating via the bijection

{irreducible algebraic subsets of kn} ≃←−−→
V;I

Spec k[T1, . . . , Tn]

induced by the strong NSS and the last proposition, this is a topology on the
space of irreducible closed subsets of An

k extending the Zariski topology in a
natural way.

But we don’t need a geometric space to translate to. We can define this topology
on any ring:

Definition 2.31. Let A be a ring. Its spectrum SpecA is the set of prime
ideals of A, equipped with the topology whose closed sets are (exactly) those of
form

V(a) := {p | a ⊆ p} for a ⊴ A.

This is indeed a topology: as in the geometric case, we have

13



� Spec(A) = V((0)) and ∅ = V((1)).

� V(a) ∪ V(b) = V(a ∩ b) = V(ab) (essentially the same proof as in the
geometric case).

�

⋂
i∈I V(ai) = V(

∑
i∈I ai).

As before, the open sets D(f) = {p | f /∈ p} form a basis for the topology on
Spec.

3 Ideals in ring extensions

Let A be a ring. We want to study SpecA, so we need to understand the
structure of its ideals. We will do this by studying what happens to ideals of A
under ring homomorphisms.

3.1 Localisation

Let A be a ring, and suppose S ⊆ A. We want to construct from A a new ring
S−1A in which the elements of S are invertible.

Observe that if a, b ∈ A× then ab ∈ A×.

Definition 3.1. S ⊆ A is multiplicative if 1 ∈ S and ab ∈ S for a, b ∈ S.

We can now define the localisation S−1A.

Definition 3.2. Define an relation ∼ on A × S by setting (a1, s1) ∼ (a2, s2)
iff u(a1s2 − a2s1) = 0 for some u ∈ S. This is an equivalence relation; set
a
s
:= [(a, s)]∼. Define algebraic operations on S−1A := (A× S)/ ∼ by

a1
s1

+
a2
s2

=
a1s2 + a2s1

s1s2
;
a1
s1
· a2
s2

=
a1a2
s1s2

.

These are indeed well defined; then S−1A equipped with these operations forms
a ring called the localisation of A by S.

Proof that addition is well defined.
Let a1

s1
= b1

t1
and a2

s2
= b2

t2
; we want a1s2+a2s1

s1s2
= b1t2+b2t1

t1t2
.

Find u, v ∈ S such that

u(a1t1 − b1s1) = v(a2t2 − b2s2) = 0;

then the difference in the sums is

(a1s2 + a2s1)t1t2 − (b1t2 + b2t1)s1s2 = (a1t1 − b1s1)s2t2 + (a2t2 − b2s2)s1t1.

The product of the last expression and uv ∈ S is 0.

We also get a ring homomorphism iS : A → S−1A mapping a → a
1 . Its kernel

is

ker iS =

{
a ∈ A

∣∣∣∣ a1 =
0

1

}
= {a ∈ A | ∃u ∈ S : ua = 0}.

Hence iS is injective iff S has no zero divisors. In particular, if A is an integral
domain and 0 /∈ S, then iS is always injective.
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Proposition 3.3 (Universal Property of S−1A).

1. iS(s) is a unit for all s ∈ S.

2. For any ring B and map f : A → B such that f(S) ⊆ B×, there is a
unique ring homomorphism h : S−1A→ B such that f = h ◦ iS.

A S−1A

B
f

iS

∃!h

Proof.

1. We have 1
s iS(s) =

1
s
s
1 = 1S−1A.

2. If h exists, we must have

f(a) = h
(a
1

)
= h

(a
s

)
h
(s
1

)
= h

(a
s

)
f(s),

so h(as ) = f(a)f(s)−1. Therefore h is unique if it exists; it remains to show
that this h is indeed well-defined (then it is clearly a homomorphism).

Indeed, let a
s = b

t , and find u ∈ S such that u(at− bs) = 0. We have

f(u)(f(a)f(t)− f(b)f(s)) = 0 so f(a)f(t) = f(b)f(s)

(since f(u) is a unit), so h(as ) = f(a)f(s)−1 = f(b)f(t)−1 = h( bt ).

Example 3.4. Let h ∈ A, and set Sh = {1, h, h2, . . . } and Ah = S−1
h A. If h is

nilpotent, then Ah = 0; if A is an integral domain and h ̸= 0, then

Ah =
{ a

hm

∣∣∣ a ∈ A,m ≥ 0
}
≤ FracA.

For example, if A = Z and h = 2, then S−1
2 Z is the set of dyadic fractions.

Proposition 3.5. Let A be a ring and h ∈ A. Then

A[T ]

(1− hT )
∼= Ah via

∑
i

aiT
i φ−→

∑
i

ai
hi
.

Proof. Viewing φ as a map from A[T ], have

φ(1− hT ) = 1 = h · h−1 = 0,

so φ descends to the quotient. It remains to show it is an isomorphism.

Indeed, let ψ′ : A→ A[T ]/(1− hT ) be the natural map. Then

ψ′(hn)Tn = hnTn = (hT )n = 1,
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so ψ′(Sh) ⊆ (A[T ]/(1− hT ))×. By the universal property, we get a map

ψ : Ah → A[T ]/(1− hT )
a

hn
→ aTn.

This is clearly an inverse to φ.

What do the ideals of a localisation S−1A look like? We first consider a more
general definition.

Definition 3.6. Let φ : A → B be a ring homomorphism. If b ⊴ B, then
bc := φ−1(b) ⊴ A is called the contraction of b (wrt φ).

On the other hand, for a ⊴ A the set φ(a) is not necessarily an ideal; define
instead ae := (φ(a)) the extension of a.

If φ is an inclusion map, then bc = b ∩ A; if φ is a quotient by I, then in fact
be = φ(b) = b+ I.

Example 3.7. Let φ : Z ↪→ Q be the natural inclusion. The nonzero ideals of
Z extend to Q (since prime integers have inverses), and Q itself contracts to Z.
Note the ideals (n) ⊴ Z for n ̸= 0 do not occur as contractions.

Proposition 3.8. (−)e and (−)c give a bijection

im(−)c = {contracted ideals of A} ←→ {extended ideals of B} = im(−)e.

Proof. Clearly, a ⊆ aec and bce ⊆ b. Setting b = ae, we get aece ⊆ ae, so in
fact ae = aece. Since extended ideals of B have form ae, the map (−)ce is the
identity on im(−)e. Dually, setting a = bc, we get bc = bece, so (−)ec is also the
identity. Hence extension and contraction are inverse on these domains.

We now consider the case of a localisation. Indeed, let A be a ring, S ⊆ A
a multiplicative subset, and iS : A → S−1A the natural map. If a ⊴ A and
b ⊴ S−1A, then

ae = S−1a =
{a
s

∣∣∣ a ∈ a, s ∈ S
}

and bc =
{
a ∈ A

∣∣∣ a
1
∈ b
}
.

Proposition 3.9. Take A, S, a and b as above. Then

(i) bce = b

(ii) (−)e and (−)c give a bijection

{ideals of A disjoint from S} ←→ {ideals of S−1A}
p −→ pe = S−1p

qc ←− q.

Further, this bijection preserves prime ideals.

Proof. Exercise, or see notes.
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Example 3.10. Let p be a prime ideal of A. Let Sp := A \ p; then Sp is
multiplicative. Write Ap = S−1

p A. The proposition gives a bijection

{prime ideals of A contained in p} ←→ {prime ideals of Ap}
p′ −→ p′

e
= S−1

p p′

qc ←− q.

Then S−1
p p contains all prime ideals of Ap, so S

−1
p p is the unique maximal ideal

of Ap. Hence Ap is a local ring.

We can study A by studying localisations of the form Ap.

Example 3.11. Let A = Z and p = (p). Then the ring

Z(p) =
{a
s

∣∣∣ a, s ∈ Z, p ∤ s
}

has unique maximal ideal

(p)e =
{a
s

∣∣∣ a, s ∈ Z, p ∤ s, p | a
}
.

3.2 Lying over problem

Let f : A ↪→ B be an inclusion of rings, and consider the map

f∗ : SpecB −→ SpecA

p −→ p ∩A.

The lying over and going up theorems deal with finding an ideal q ⊴ B such
that q∩A = p. In this case, we say q lies over p. To do this in general, we will
need the extension A ≤ B to be integral.

Lemma 3.12. Let A ≤ B be an integral extension of rings, and suppose q ⊴ B
is prime. Then q is maximal (in B) iff q ∩A is maximal in A.

Proof. B/q is an integral domain; since A/(q∩A) ↪→ B/q by the second isomor-
phism theorem, A/(q∩A) is also an integral domain, and the inclusion gives an
integral extension. We showed earlier that one quotient is a field iff the other
is, so q is maximal iff q ∩A is.

Take rings A ≤ B and a multiplicative set S ⊆ A. Then we can view S−1A as a
subset of S−1B in a natural way. Indeed, consider the composition A ↪→ B →
S−1B. This sends elements of S to units in S−1B, so, by the universal property,
it extends to a map φ : S−1A → S−1B with φ(a/s) = (1/s) · (a/1) = a/s. By
definition, φ is injective, so it is the desired inclusion.

Lemma 3.13. Let A, B and S be as above, and suppose further that A ≤ B is
an integral extension. Then the extension is S−1A ≤ S−1B is integral.

Proof. Fix b
s ∈ S

−1B, and let

bn + a1b
n−1 + · · ·+ anb

0 = 0
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for some n ≥ 1 and a1, . . . an ∈ A. Dividing by sn, get(
b

s

)n

+
(a1
s

)( b
s

)n−1

+ · · ·+
(an
sn

)( b
s

)0

= 0.

Proposition 3.14 (Lying over). Let A ≤ B be an integral extension of rings,
and let p ⊴ A be prime. Then there is a prime q ⊴ B lying over p.

Example 3.15. The extension Z ≤ Q is not integral, and no ideal of Q lies
over (2) ⊴ Z.

Proof. Let Bp := (A \ p)−1B; then Ap ≤ Bp is an integral extension.

We first solve the lying over problem for pAp = pe in Ap ≤ Bp.

Let n be a maximal ideal of Bp. By the previous lemma, n ∩ Ap is maximal in
Ap, so n ∩ A = pAp by uniqueness. Hence n lies over pAp. We therefore have
the diagram

q := n ∩B B Bp n

p A Ap pAp

⊆

⊆

⊇

⊇

Claim: q lies over p (i.e., the square commutes on the ideals).

Indeed, p is a prime ideal of A contained in p, so the solid arrows of the diagram
induce bijections under contraction and expansion. Then

qc = ncc = (pAp)
c = p.

Theorem 3.16 (Going up). Let A ≤ B be an integral extension of rings, and
suppose there are ascending chains of primes

p1 ⊆ p2 ⊆ · · · ⊆ pn ⊴ A and q1 ⊆ q2 ⊆ · · · ⊆ qm ⊴ B

with qi lying over pi for 1 ≤ i ≤ m ≤ n.

Then we can extend the second chain by primes

qm ⊆ · · · ⊆ qn ⊴ B

with qi lying over pi for m < i ≤ n.

Proof. By induction, it suffices to show the case n = 2 and m = 1.

That is, we have an inclusion p1 ⊆ p2 ⊴ A and q1 ⊴ B lying over p1; we want
a prime q2 ⊴ A containing q1 and lying over p. We enforce this by taking a
quotient.
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Indeed, consider the inclusion A/p1 ↪→ B/q1, and let the prime q̃2 ⊴ B/q1 lie
over p2/p1 ⊴ A/p1. Then q̃2 = q2/q1 for some prime q2 ⊴ B; this is the ideal
we want.

Indeed, q1 ⊆ q2, and, identifying the quotients via the inclusion,

q2
q1
∩ A

p1
=

p2
p1
.

For a ∈ p2 ⊆ A, we have a+ q1 ∈ q2/q1, so a ∈ q2.

Conversely, take a ∈ A ∩ q2; then a + q1 ∈ p2/p1. Write a = a′ + b for a′ ∈ p2
and b ∈ q1; then b = a−a′ ∈ A, so b ∈ A∩q1 = p1. Hence a ∈ p2+p1 = p2.

Example 3.17. Let Z ≤ Z[T ]; this is not an integral extension. Then going up
fails: consider (0) ⊆ (2), and consider the ideal (1+2T ) lying over (0). Then, if
q ⊴ Z[T ] lies over (2) and contains (1+2T ), then 2 ∈ q so 1 = (2T+1)−T (2) ∈ q,
so q = Z[T ] cannot be prime.

Proposition 3.18 (Incomparability). Let A ≤ B be an integral extension of
rings, and let p ⊴ A be prime. Let q ⊆ q′ ⊴ B be nested primes both lying over
p. Then in fact q = q′.

Proof. Recall that Ap ≤ Bp is an integral extension. Since q and q′ are contained
in pe (that is, disjoint from B\pe), their extensions qBp ⊆ q′Bp to Bp are prime.

Claim: qBp contracts to pAp in Ap.

Indeed, we have the diagram

q, q′ B Bp qBp, q
′Bp

p A Ap pAp

⊆

⊆

⊇

⊇

The solid arrows induce bijections by contraction and expansion. Let qBp con-
tract to some prime p′Ap; this contracts to p, as

(p′Ap)
c = (qBp)

cc = qc = p,

so in fact p′ = p.

Then qBp and q′Bp both lie over the maximal ideal pAp, so they are both
maximal, and therefore equal as they are nested.

3.3 Integrally closed domains

The dual theorem to going up, called going down, requires stronger conditions
on A and B.

Definition 3.19. Let A and B be rings. The integral closure of A in B is
the set {b ∈ B | b integral over A}.

If A is an integral domain, its integral closure is its integral closure in FracA.
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Proposition 3.20. Let A ≤ B be rings. The integral closure of A in B is a
subring of B.

Proof. Example sheet.

Definition 3.21. An integral domain A is integrally closed if it is equal to
its own integral closure.

Example 3.22. Z is integrally closed, but Z[
√
5] is not: 1+

√
5

2 satisfies the
monic polynomial X2 −X − 1 ∈ Z[X]

Proposition 3.23. Every UFD is integrally closed.

Proof. Let A be a UFD, and let x ∈ FracA. Then we can write x = a
b for some

a ∈ A and 0 ̸= b ∈ B. Suppose that x is integral over A; then(a
b

)n
+ a1

(a
b

)n−1

+ · · ·+ an

(a
b

)0
= 0

for some ai ∈ A. Multiplying by bn and rearranging, we get

an = −b(a1an−1 + · · ·+ anb
n−1),

so b | a and so x ∈ A.

Proposition 3.24. Let A be an integrally closed integral domain, and let E/FracA
be a finite field extension. Then α ∈ E is integral over A iff its minimal poly-
nomial over FracA is in A[T ].

Proof. Let f be the minimal polynomial of α over FracA. If f ∈ A[T ], then α
is integral over A.

Conversely, suppose α is integral over A; let L be a splitting field for f over
FracA. The roots of f have form σα for σ ∈ Aut(L/FracA), so they are integral
over A. By the Vieta formulae, the coefficients of f are sums of products of its
roots, and therefore integral over A. Since f ∈ (FracA)[T ] and A is integrally
closed, in fact f ∈ A[T ].

Definition 3.25. Let A ≤ B be rings, and let a ⊴ A. Then b ∈ B is integral
over I if it is the root of a monic polynomial in the A-module a[X].

Note that, if bm is integral over a, then so is b.

Proposition 3.26. Let A ≤ B be rings, let a ⊴ A, and fix b ∈ B. Then b is
integral over a if there is an A[b]-submodule M ≤ B such that

(i) M is faithful over A[b].

(ii) M is a finitely generated A-module.

(iii) bM ⊆ aM .

Proof. Exercise; analogous to the proof in the case of integrality over a ring.
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Proposition 3.27. Let A ≤ B be rings, and let A be the integral closure of A

in B. Let a ⊴ A. Then the integral closure of a in B is
√
aA.

Proof. Suppose b ∈ B is integral over a; then in particular b ∈ A, and

bn + ∈ a1︸︷︷︸
a

bn−1︸︷︷︸
∈A

+ · · ·+ anb
0 = 0 for some ai ∈ a,

so bn ∈ aA. Hence b ∈
√
aA.

Conversely, suppose b ∈
√
aA. Then

bn = a1x1 + · · ·+ amxm for some ai ∈ a, xi ∈ A, n ∈ N.

Since each xi is integral over A, the ringM := A[x1, . . . , xn] is a finite A-algebra.
ThenM is also faithful over A[b] as 1 ∈M . Finally, bnM ⊆ aM by the relation.
By the last proposition, bn is integral over a, and so b is integral over a.

Proposition 3.28. Let A be an integrally closed integral domain, and let E/FracA
be an extension. If x ∈ E is integral over a ⊴ A, then the minimal polynomial
of x over FracA has coefficients in

√
a.

Proof. Example sheet; analogous to the proof in the case of integrality over a
ring.

We now prove a sharp condition for solving the lying over problem.

Lemma 3.29. Let A be a ring, and I ⊴ A. Let S be a multiplicative set disjoint
from I. Then there is an ideal J ⊇ I of A which is maximal wrt being disjoint
from S, and further J is prime.

Proof. Apply Zorn’s lemma to the poset of ideals containing I and disjoint from
S. A maximal element of this poset is prime (see example sheet 1).

Proposition 3.30. Let φ : A→ B be a ring homomorphism, and let p ⊴ A be
prime. Then p is a contraction under φ of some prime ideal in B iff pec = p.

Proof. We already showed that, if p ∈ im(−)c, then p = pec.

Conversely, suppose p = pec, and let S = A \ p. Then φ(S) is a multiplicative
set disjoint from pe: indeed, φ(a) ∈ pe =⇒ a ∈ pec = p =⇒ a /∈ S. By the
last lemma, there is a prime q ⊇ pe in B disjoint from φ(S). Then qc ⊇ p, but
qc is disjoint from S = A \ p, so in fact qc = p.

Theorem 3.31 (Going down). Let A ≤ B be an integral extension of integral
domains, and suppose A is integrally closed. Take descending chains of primes

A ⊴p1 ⊇ p2 ⊇ · · · ⊇ pn and B ⊴q1 ⊇ q2 ⊇ · · · ⊇ qm

with qi lying over pi for 1 ≤ i ≤ m ≤ n.
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Then we can extend the second chain by primes

B ⊴qm ⊇ · · · ⊇ qn

with qi lying over pi for m < i ≤ n.

Proof. By induction, it suffices to prove the case where m = 1 and n = 2.

We have p1 ⊇ p2, and q1 lying above p1.

Consider the inclusions A ⊆ B ⊆ Bq1 .

Claim: p2 = pec = (p2Bq1
) ∩A.

Assuming the claim, we are done. Indeed, by the last proposition, we have a
prime q2 ⊴ Bq1

lying over p2. Let q2 = q2 ∩ B be the contraction of q2 in B.
Then q2 is the contraction of a prime ideal in Bq1

, so, by the bijection, it is a
prime containing q1. But q2 lies over p2 by construction.

Proof of claim: We have p2 ⊆ pec2 = (p2Bq1
)∩A. Conversely, fix a ∈ (p2Bq1

)∩
A; write a = y

s for some y ∈ p2B and s ∈ B \ q1. The integral closure of p2 in
B is

√
p2B, so y is integral over p2. The minimal polynomial of y over FracA

therefore has coefficients in p2; concretely, write

ym + c1y
m−1 + · · ·+ cmy

0 = 0 for some ci ∈ p2.

Substituting y = as and dividing out the leading coefficient, we get that s has
minimal polynomial

Xm +
c1
a
Xm−1 + · · ·+ cm

am
X0 = 0

over FracA. Since s ∈ B is also integral over A, each coefficient ci
ai lies in A.

Suppose (for a contradiction) that a /∈ p2; since
ci
ai ·ai = ci ∈ p2, the coefficients

ci
ai all lie in p2, and so sm ∈ p2B. But

sm ∈ p2B ⊆ p1B ⊆ q1,

so in fact s ∈ q1.# Therefore a ∈ p2.

4 Dimension theory

4.1 Krull dimension

Definition 4.1. Let A be a ring. The height of a prime ideal p ̸= A is the
maximal length d of a descending chain of prime ideals

A ⊴p = pd ⊋ pd−1 ⊋ · · · ⊋ p0.

The Krull dimension dimA of A is the supremum over all heights of prime
ideals.

By convention, we set dim 0 = −1.

Examples 4.2.
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1. A field has dimension 0.

2. Let k be a field. Clearly, dim k[T1, . . . , Tn] ≥ n due to the chain

(T1, . . . , Tn) ⊋ · · · ⊋ (T1) ⊋ 0.

Showing the dimension is exactly n (that is, there are no longer chains) is
much harder.

3. If A is an integral domain, then dimA = 0 iff A is a field. Indeed, (0) ⊴ A
is prime.

4. The dimension of a PID which is not a field is 1.

Note that the height of a prime ideal need not be finite: for example, k[T1, T2, . . . ]
contains the infinite descending chain

(T1, T2, T3, . . . ) ⊇ (T2, T3, . . . ) ⊇ (T3, . . . ) ⊇ . . .

If A is Noetherian, we will show that heights remain finite. However, they are
not necessarily bounded, so the Krull dimension of a Noetherian ring can still
be infinite.

We now state some equivalent definitions of, and facts about, the transcendence
degree of a field extension L/k. The proofs are not hard, and can be found in
any book on field theory.

Definition 4.3. A subset A ⊆ L is a transcendence basis over k if A is
algebraically independent over k and L/k(A) is algebraic.

Proposition 4.4.

(i) Let A ⊆ L be algebraically independent over k. Then there is an exten-
sion A ⊆ B ⊆ L such that B is a transcendence basis for L over k. In
particular, taking A = ∅, transcendence bases exist.

(ii) All transcendence bases for L/k have the same cardinality.

(iii) Take another extension E/L/k. If B is a transcendence basis for E/L and
C is a transcendence basis for L/k, then B ∪ C is a transcendence basis
for E/k.

Definition 4.5. The cardinality of a (any) transcendence basis of L/k is the
transcendence degree trdegk L for L/k.

In this language, (iii) of the proposition says that trdegk E = trdegk L +
trdegLE.

Definition 4.6. Let A be an integral domain containing a field k. The tran-
scendence degree of A over k is trdegk A := trdegk FracA.

We will show that, when A is a finitely generated k-algebra,

trdegk A = dimA.

Let R be a ring, and let x ∈ R. Consider the multiplicative set

S{x} := {xn(1− rx) | n ≥ 0, r ∈ R},

and write R{x} = S−1
{x}R. Note that x ∈ S{x}.
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Proposition 4.7. Let R be a ring and n ≥ 0. Then dimR ≤ n iff dimR{x} ≤
n− 1 for all x ∈ R.

Proof. We begin by observing some facts.

Fact 1: If m ⊴ R is maximal and x ∈ R, then m ∩ S{x} ̸= ∅.

Indeed, if x /∈ m, then x has an inverse y modulo m (since the quotient is a
field), so 1− yx ∈ m.

Fact 2: If p ⊊ m ⊴ R, with p prime and m maximal, then, for x ∈ m \ p, we
have p ∩ S{x} = ∅.

Indeed, suppose y = xn(1 − rx) ∈ p ∩ S{x}. Then 1 − rx ∈ p ⊆ m, so, since
x ∈ m, also 1 ∈ m.#

Now, suppose dimR ≤ n and fix x ∈ R. Expansion and contraction along
the inclusion R ↪→ R{x} induce a bijection between prime ideals of R{x} and
prime ideals of R disjoint from S{x}. In particular, this bijection preserves strict
inclusion. Take a descending chain of primes in R{x} of length l. Contracting
this chain along the inclusion gives a chain of primes of length l in R; by fact
1, the contracted chain cannot contain a maximal ideal, so we can add on a
maximal ideal to obtain a chain of length l + 1 in R. Then l + 1 ≤ n, so
dimR{x} ≤ n− 1.

Conversely, suppose dimR{x} ≤ n − 1 for x ∈ R. If dimR = 0 then we are
done, so suppose dimR > 0. Take a maximal descending chain of primes in
R; it must start m ⊋ p ⊋ . . . for some maximal m. Say this chain has length
l. Fix x ∈ m \ p; by fact 2, the prime ideals in the chain from p onwards
are disjoint from S{x}, so the chain p ⊋ . . . (which has length l − 1) extends
along the inclusion to a descending chain of primes in R{x} of length l − 1. By
assumption, l − 1 ≤ n− 1, so l ≤ n.

Proposition 4.8. Let A be an integral domain, and let k ≤ A be a subfield.
Then dimA ≤ trdegk A.

Proof. If trdegk A =∞, we are done, so suppose trdegk A = n ∈ N, and proceed
by induction.

For n = 0, FracA/k is algebraic, so A is also algebraic, and therefore integral,
over k. But this means A is a field, and so dimA = 0.

Let n > 0. Fix x ∈ A; by the last proposition, it suffices to show dimA{x} ≤
n− 1.

We have k(x) ⊆ A{x}. Indeed, every element of k(x) can be written as a ratio
f(x)/g(x), where f, g ∈ k[X] and the lowest nonzero coefficient of g is 1. Then
we can write

g(x) = xk +

n∑
j=k+1

ajx
j = xk

1−
n∑

j=k+1

(−ajxj−k)

 ∈ S{x}.
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If x is transcendental over k, then trdegk k(x) = 1. Then

trdegk(x) FracA{x}︸ ︷︷ ︸
=FracA

= trdegk(x) FracA︸ ︷︷ ︸
=trdegk(x) A

− trdegk k(x) = n− 1,

so, by induction, dimA{x} ≤ n− 1, as required.

If x is algebraic over k, then 0 ∈ S{x}, and so A{x} = 0, so dimA{x} = 0 ≤
n− 1.

In particular, we have shown that

dim k[T1, . . . , Tn] = n.

We now want a converse to this result.

Proposition 4.9. Let A ≤ B be an integral extension of rings. Then

(i) dimA = dimB.

(ii) If, further, A and B are integral domains, and k is a field such that A is
a k-subalgebra of B, then trdegk A = trdegk B.

Proof.

(i) Let pn ⊋ · · · ⊋ p0 be a chain of primes in A. By the lying over and going
up theorems, we can lift this to a chain of primes in B, so dimA ≤ dimB.

Conversely, let qn ⊋ · · · ⊋ q0 be a chain of primes in B. Let pi = qi ∩ A;
then the pi form a descending chain in A of length n. It remains to show
the chain is strict; then dimB ≤ dimA. Indeed, if pi = pi+1, then, by
incomparability, qi = qi+1.#

(ii) Example sheet.

This justifies the notion of dimension from Noether normalisation described
earlier: if a k-algebra A is finite (and hence integral) over a subring A′ ∼=
k[T1, . . . , Td], then dimA = d.

Theorem 4.10. Let k be a field, and let A be a finitely generated k-algebra and
an integral domain. Then

dimA = trdegk A.

Proof. By Noether normalisation, A is integral over some B = k[t1, . . . , tn],
with the ti algebraically independent over k. By the last proposition, dimA =
dimB, so it suffices to show that dimB = trdegk B. We already showed that
dimB ≤ trdegk B; conversely, the chain

(t1, . . . , tn) ⊋ (t1, . . . , tn−1) ⊋ · · · ⊋ (t1) ⊋ 0

of primes of B has length n = trdegk B.
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Example 4.11. Let A = k[T1, T2], with k an algebraically closed field. Let
p ∈ SpecA be a nonzero non-maximal prime, and take 0 ̸= f ∈ p. Then p
contains some irreducible factor g | f ; taking a maximal ideal m containing p,
we have a chain

0 ⊊ (g) ⊆ p ⊊ m

of primes in A. Since dimA = 2, we have that, in fact, p = (g).

By the weak NSS, we can already classify the maximal ideals. Hence

SpecA = {0} ∪ {(g) | g ∈ k[T1, T2] irreducible} ∪ {(T − t1, T − t2) | t1, t2 ∈ k}.

4.2 Nakayama’s Lemma

Definition 4.12. Let A be a ring. Write nil(A) =
√
0 =

⋂
SpecA for the

nilradical, and J(A) =
⋂
mSpecA for the Jacobson radical.

Theorem 4.13 (Nakayama’s Lemma). Let a ⊴ A such that a ⊆ J(A), and let
M be a finitely generated A-module. Then

(i) If aM =M , then M = 0.

(ii) If N ≤M is such that M = N + aM , then M = N .

Proof.

(i) Suppose aM =M , butM ̸= 0. Take a minimal generating set {e1, . . . , en}
of M ; by assumption, n ≥ 1.

Since e1 ∈ M = aM , write e1 =
∑n

i=1 aiei for some ai ∈ a; rearranging,
we have

(1− a1)e1 =

n∑
i=2

aiei.

Now, (1 − a1) /∈ m for any m ∈ mSpecA, since otherwise 1 ∈ m as a1 ∈
a ⊆ m. Hence (1 − a1) is a unit, and so e1 ∈ ⟨e2, . . . , en⟩A, contradicting
minimality.

(ii) Apply (i) to the finitely generated A-module M/N . Indeed, aM/N =
M/N , so M/N = 0, and so M = N .

Proposition 4.14 (Krull’s intersection theorem). Let A be Noetherian, and
take a ⊴ A with a ⊆ J(A). Then ⋂

n≥1

an = 0.

Proof. Write M =
⋂

n≥1 a
n.

Claim: M = aM .

Since M ⊴ A, it is an A-module; since A is Noetherian, M is finitely generated,
and alsoM ⊆ J(A) by assumption. Therefore, assuming the claim, we are done
by Nakayama’s lemma.
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Proof of claim: We clearly have the ⊇ inclusion. For the converse, observe
that, since A is Noetherian, a is finitely generated; write a = (a1, . . . , ar) for
some ai ∈ A.

Let Hn be the set of homogeneous polynomials of degree n in r variables; then

an = {g(a1, . . . , ar) | g ∈ Hn}.

Let Sm = {f ∈ Hm | f(a1, . . . , ar) ∈M}, and let c be the ideal of A[T1, . . . , Tr]
generated by

⋃
m≥1 Sm.

By (corollaries of) Hilbert’s basis theorem, c is generated by some finite set
{f1, . . . , fs} ⊆

⋃
m≥1 Sm of homogeneous polynomials (of degree at most m).

Let di = deg fi and d = maxi di.

Now, fix b ∈M . In particular, b ∈ ad+1, so b = f(a1, . . . , ar) for some f ∈ Hd+1.
Thus f ∈ Sd+1 ⊆ c, and so f =

∑
i gifi for some gi ∈ A[T1, . . . , Tr].

Taking the degree-(d+1) homogeneous part of both sides of the summation, we
get

f = (g1)[d−d1]f1 + · · ·+ (gs)[d−ds]fs,

where h[j] is the degree-j homogeneous part of h. Since none of the (gi)[d−di]

have a constant term, we get

b = f(a1, . . . , ar) =

s∑
i=1

(gi)[d−di](a1, . . . , ar)︸ ︷︷ ︸
∈a

· fi(a1, . . . , ar)︸ ︷︷ ︸
∈M

∈ aM.

4.3 Artinian rings

Definition 4.15. A ring A is Artinian if every descending chain of ideals sta-
bilises. Equivalently, every nonempty set of ideals of A has a minimal element.

Observe that quotients of an Artinian ring are Artinian, by correspondence.

Let A ̸= 0. We want to show that A is Artinian iff it is Noetherian of dimension
0.

Proposition 4.16. A nonzero Artinian ring has dimension zero.

Proof. Let p ∈ SpecA, and let A′ = A/p. Then A′ is an Artinian integral
domain. If we can show A′ is a field, we are done since then p is maximal.

Let 0 ̸= a ∈ A′; let the descending chain (a) ⊇ (a2) ⊇ (a3) . . . stabilise at (an).
Then (an) = (an+1), so an = ban+1 for some b ∈ A′. Since A′ is an integral
domain, 1 = ab. Hence A′ is indeed a field.

Examples 4.17.

1. An integral domain is Artinian iff it is a field: indeed, fields are Artinian
and Artinian integral domains have dimension 0.

2. Every finite ring is Artinian.
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3. Let k be a field. Then k × k is Artinian, and so is k[T ]/(Tn).

4. Z and k[T ] are Noetherian, but not Artinian.

Corollary 4.18. If a ring A is Artinian, then nil(A) = J(A).

Proposition 4.19. Let A be an Artinian ring. Then A has finitely many
maximal ideals.

Proof. Let Σ be the collection of finite intersections of maximal ideals of A.
Since A is Artinian, let a =

⋂n
i=1 mn be a minimal element of Σ.

Claim: mSpecA = {m1, . . . ,mn}.

Indeed, suppose there is some other maximal ideal m. Find elements ai ∈ mi\m;
then a1 . . . an ∈

⋂m
i=1 mi \m (since m is in particular prime), so

m⋂
i=1

mi ∩m ⊊
n⋂

i=1

mi = a.#

Proposition 4.20. Let A be an Artinian ring. Then nil(A)n = 0 for some n.

Proof. Consider the chain nil(A) ⊇ nil(A)2 ⊇ . . . ; this stabilises, so nil(A)n+1 =
nil(A)n for some n ∈ N.

Claim: nil(A)n = 0.

Suppose not; then

nil(A) ∈ Σ := {a ⊴ A | a nil(A)n ̸= 0}

so Σ ̸= ∅. Let a be a minimal element of Σ, and take x ∈ a such that x nil(A)n ̸=
0. Then (x) nil(A)n ̸= 0, so, by minimality, a = (x). Since nil(A)n+1 = nil(A)n,
we have

(xnil(A)n)(nil(A)n) = x nil(A)2n = xnil(A)n ̸= 0,

so xnil(A)n ∈ Σ. But xnil(A)n ⊆ (x), so, again by minimality, (x) = xnil(A)n.
There is therefore some y ∈ nil(A)n such that x = xy; since y is nilpotent, write
yk = 0. But then xk = xkyk = 0.#

Definition 4.21. Let M be a module over a ring A. Then M is Noethe-
rian/Artinian if every ascending/descending chain of submodules of M sta-
bilises.

Note that A is Noetherian/Artinian as a ring iff it is Noetherian/Artinian as
an A-module (by definition). Note also that, for a submodule N ≤ M , M is
Noetherian/Artinian iff both M/N and N are.

Proposition 4.22. Let A be a ring, and suppose there are m1, . . . ,mn ∈ mSpecA
such that m1 . . .mn = 0. Then A is Noetherian iff it is Artinian.
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Proof. Consider the (finite) descending chain

A ⊇ m1 ⊇ m1m2 ⊇ · · · ⊇ m1 . . .mn = 0.

Let Mr = m1 . . .mr−1/m1 . . .mr (so that M1 = A/m1). The Mr are naturally
A-modules; since mr acts trivially onMr, theMr are in fact A/mr-vector spaces.
By correspondence, we have a bijection

{A/mr-linear subspaces of Mr} ←→
{
A-submodules of m1 . . .mr−1

containing m1 . . .mr

}
.

Note that the set on the LHS satisfies the ACC/DCC iff the set on the RHS
does. The sets on the RHS all satisfy the ACC (as r varies) iff A is Noetherian,
and all satisfy the DCC iff A is Artinian. The sets on the LHS satisfy the ACC
and the DCC iff each Mr is finite-dimensional. Therefore A satisfies the ACC
iff it satisfies the DCC.

Lemma 4.23. Let A be a Noetherian ring. Then every radical ideal of A is an
intersection of finitely many primes.

Proof. Exercise.

Theorem 4.24. A ring A is Artinian iff it is Noetherian of dimension 0.

Proof. Suppose A is Artinian. Then dimA = 0, and we have mSpecA =
{m1, . . . ,mn}, and some l ∈ N such that

0 = nilAl = (m1 ∩ · · · ∩mn)
l ⊇ (m1 . . .mn)

l.

By the last proposition, A is Noetherian.

The converse is on the example sheet.

4.4 Exact sequences

Definition 4.25. Let A be a ring. A sequence

M1 M2 . . . Mn
f1 f2 fn−1

of A-modules is an exact sequence if, for all i,

im fi = ker fi+1.

A short exact sequence is an exact sequence of the form

0 N M L 0

Note that, in the short exact sequence above, we have M/N ∼= L.

Definition 4.26. A graded ring (A, (An)) is a ring A along with a sequence
(An)

∞
n=0 of additive subgroups of A such that

� A =
⊕

j Aj .
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� AiAj ⊆ Ai+j for all i, j.

Write A+ =
⊕

i≥1Ai ⊴ A, and let x ∈ A be homogeneous if x ∈ An for some
n.

Example 4.27.

k[T1, . . . , Tn] =

∞∑
n=0

Hn,

where Hn is the additive group of homogeneous polynomials of degree n.

Lemma 4.28. A0 is a ring.

Proof. A0 is a multiplicatively closed abelian subgroup of A; it remains to show
1A ∈ A0.

Indeed, write 1A =
∑m

i=0 ai for some ai ∈ Ai and m ∈ N. For b ∈ An, we have

b =

m∑
i=0

bai︸︷︷︸
∈An+i

so, since A = ⊕mAm, in fact b = ba0. Then x = xa0 for all x ∈ A, so
1A = a0 ∈ A0.

Each Am is then an A0-module.

Definition 4.29. Let A be a graded ring. A graded A-module (M, (Mn)) is
an A-module, along with a sequence (Mn)

∞
n=0 of A-submodules of M such that

� M =
⊕

j Mj .

� AiMj ⊆Mi+j for all i, j.

For example, a graded ring is a graded module over itself.

A homomorphism f :M → N of graded A-modules is then an A-module homo-
morphism with f(Mi) ⊆ Ni for all i.

Proposition 4.30. Let A be a graded ring. Then A is Noetherian iff A0 is
Noetherian and A is finitely generated as an A0-algebra.

Proof.
⇐: Hilbert’s basis theorem.

⇒: Suppose A is Noetherian; then A0
∼= A/A+ is Noetherian. Now, A+ ⊴ A is

generated by the set of all homogeneous elements of positive degree; let A+ =
(x1 . . . , xs), with xi ∈ Aki

(ki > 0). Let A′ = A0[x1, . . . , xs].

Claim: A′ = A.

It suffices to show An ⊆ A′ for all n ∈ N. For n = 0, we have A0 ⊆ A′; for
n > 0, take y ∈ An, and write

y =

s∑
i=1

aixi.
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Taking the nth homogeneous component (formally, projecting onto An), we can
assume wlog that ai ∈ An−ki

. But n− ki < n, so, by induction, ai ∈ A′. Hence
y ∈ A′.

Definition 4.31. Let A be a ring, and let C be a class of A-modules. Then a
mapping λ : C → Z is an additive function on C if for all short exact sequences

0 N M L 0

we have λ(M) = λ(N) + λ(L); that is,

λ(M) = λ(N) + λ(M/N)

for all submodules N ≤M .

Example 4.32. Let A = k be a field, and C the class of finite-dimensional
k-vector spaces. Then λ(V ) = dimk V is an additive function.

Proposition 4.33. For an exact sequence

0 M1 . . . Mn 0

we have
n∑

k=0

(−1)kλ(Mk) = 0.

Proof. Example sheet.

Definition 4.34. Let M be an A-module. A composition series for M is a
maximal descending chain of submodules

M =Mn ⪈Mn−1 ⪈ · · · ⪈M0 = 0

Maximality here is with respect to chain refinement.

Lemma 4.35. If a module M has a composition series of length M , then all
composition series of M have length n. Further, every chain of submodules of
M can be refined to a composition series.

Proof. Exercise.

Definition 4.36. The length of a (any) composition series for M is called its
length l(M). If no composition series exists, say the length is ∞.

Proposition 4.37. An A-module M has finite length iff M is Noetherian and
Artinian.

Proof.
⇒: All chains of submodules have finite length.

⇐: Since M is Noetherian, we have a chain of submodules

M =M0 ⪈M1 ⪈M2 ⪈ . . .
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where Mi is maximal in Mi−1. Indeed, given Mi−1, take an ascending chain of
submodules of it, and let Mi be the submodule at which this chain terminates.
Since M is Artinian, this chain (Mi) itself terminates. By construction, it must
terminate at 0, so this chain is a composition series for M .

Proposition 4.38. The mapping M → l(M) is additive.

Proof. Exercise.

4.5 Hilbert polynomials

Let A =
⊕

nAn be a Noetherian graded ring. As we have seen, A0 is Noetherian
and A = A0[x1, . . . , xs] for some homogeneous xi ∈ Aki

with ki > 0. Now, let
M =

⊕
nMn be a finitely-generated graded A-module; letM be generated over

A by m1, . . . ,mb for some mi ∈Mri .

Every element of Mn is of form

b∑
j=1

fj(x1, . . . , xs) ·mj ,

for some fj ∈ A0[T1, . . . , Ts] such that fj(x1, . . . , xs) ∈ An−rj . Therefore Mn

is generated as an A0-module by elements of the form xe11 . . . xess · mj , where
1 ≤ j ≤ n and

∑
i eiki = n− rj . There are finitely many such elements, so Mn

is a finitely generated A0-module.

Let λ be an additive function on the class of finitely-generated A0-modules. A
good example for intuition is λ = l and A0 Artinian.

Definition 4.39. The Poincaré Series of M wrt λ is

P (M,T ) :=

∞∑
n=0

λ(Mn)T
n ∈ ZJT K.

Theorem 4.40 (Hilbert-Serre). P (M,T ) is a rational function in T of form

P (M,T ) =
f(T )∏s

i=1(1− T ki)
with f(T ) ∈ Z[T ].

Proof. Proceed by induction on s.

If s = 0, then A = A0. Since M is a finite A0-module, for sufficiently large n
we have Mn = 0, and so λ(Mn) = 0. Hence P (M,T ) ∈ Z[T ].

For s > 0, consider the A0-module homomorphism ·xs :Mn →Mn+ks given by
multiplication by xs. This yields the exact sequence of A0-modules below.

Kn = ker(·xs) Mn Mn+ks

Mn+ks

im(·xs)
= Ln+ks

·xs

Let K :=
⊕

nKn and L :=
⊕

n Ln+ks
; these are both finitely-generated graded

A-modules since they are, respectively, an A-submodule and a quotient of M in
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a way that respects the grading. But, by construction ,both are annihilated by
xs, so they are in fact finitely-generated graded A0[x1, . . . , xs−1]-modules.

By induction, P (K,T ) and P (L, T ) are rational functions with denominator∏s−1
i=1 (1− T ki). But additivity of λ gives

λ(Kn)− λ(Mn) + λ(Mn+ks
)− λ(Ln+ks

) = 0;

multiplying by Tn+ks and rearranging, we have

λ(Mn+ks) · Tn+ks − T ksλ(Mn) · Tn = λ(Ln+ks) · Tn+ks − T ksλ(Kn) · Tn.

Summing over all n ≥ 0, we therefore have

(1− T ks)P (M,T ) = P (L, T )− T ksP (K,T ) + g(T )

for some correction term g(T ) ∈ Z[T ] of degree at most ks. This gives the
result.

From now on, assume λ takes values on Z≥0 and λ(N) = 0 only for N = 0 (we
have in any case λ(0) = 0, by additivity).

Write d(M) for the order of the pole of P (M,T ) at T = 1. We have d(M) ≥ 0
for M ̸= 0. Indeed, if d(M) ≤ 0, then in particular

lim
T→1−

f(T )∏s
i=1(1− T ki)

= 0;

since the r.o.c. of the rational function is 1, we also have limT→1− P (M,T ) = 0.
But then λ(Mn) = 0 for all n ∈ N, and so M = 0.

Proposition 4.41. Suppose x ∈ Ak is not a zero divisor inM . Then d(M/xM) =
d(M)− 1.

Proof. Construct the exact sequence as in the previous theorem, but with x in
place of xs. Then Kn = 0 since x annihilates only 0, and Ln+k = Mn+k/xMn.
Then we get

(1− T k)P (M,T ) = P (L, T ) + g(T );

since (1 − T k) has a simple zero at 1, d(M) = d(L) + 1. But we can write
L = (⊕n≥kMn)/xM , so P (L, T ) and P (M/xM,T ) differ by a polynomial in
Z[T ], and so d(M/xM) = d(L) = d(M)− 1.

Example 4.42. Let A = k[T1, . . . , Ts] =
⊕

nHn. Now, H0 = k, so A is
generated as an H0-algebra by T1, . . . , Ts ∈ A1. Therefore ki = 1 for 1 ≤ i ≤ s.

Proposition 4.43. Suppose ki = 1 for 1 ≤ i ≤ s. Then there is a polynomial
HPM ∈ Q[T ] of degree d(M) − 1 (where deg 0 = −1) such that λ(Mn) =
HPM (n) for large enough n.

Note that such a polynomial is necessarily unique, since it is determined at
infinitely many points.

33



Proof. Write d = d(M). Applying Hilbert-Serre and cancelling any factors of
T − 1 in the numerator of P (M,T ), there is some f ∈ Z[T ] such that f(1) ̸= 0
and

∞∑
k=0

λ(Mk)T
k = P (M,T ) = (1− T )1−sf(T ) := (1− T )−d

N∑
i=0

akT
k,

for some d ≤ k − 1 and ak ∈ Z. Then

(1− T )−d =

∞∑
k=0

(
d+ k − 1

d− 1

)
T k.

Therefore, comparing coefficients, for large enough n we must have

λ(Mn) =

N∑
k=0

ak

(
d+ n− k − 1

d− 1

)
:= HPM (n).

This is a polynomial over Q in n. The leading coefficient is∑N
k=0 ak

(d− 1)!
=

f(1)

(d− 1)!
̸= 0,

so the polynomial has degree d− 1.

The polynomial HPM is called the Hilbert polynomial of M (wrt λ). Note
that HPM maps Z→ Z, yet it lies in Q[T ] in general.

Example 4.44. Let k be a field and A = k[T1, . . . , Ts]. Then An is a k-
vector space with basis {T e1

1 . . . T es
s |

∑
i ei = n}, so dimAn =

(
s+n−1
s−1

)
. Set

λ(V ) = dimk(V ); then P (A, T ) = (1− T )−s, f = 1 and HPA(n) =
(
s+n−1
s−1

)
.

4.6 Filtrations

Definition 4.45. Let M be a module over a ring A. A filtration of M is a
descending chain M =M0 ≥M1 ≥ . . . of submodules. If a ⊴ A, then the chain
(Mn)

∞
n=0 is an a-filtration if aMn ≤ Mn+1 for all n ∈ N. An a-filtration is

stable if aMn =Mn+1 for sufficiently large n.

Example 4.46. (anM) is a stable a-filtration of M .

Stable a-filtrations of M are all in a sense equivalent.

Lemma 4.47 (Bounded Differences). Let (Mn) and (M ′
n) be stable a-filtrations

of M . Then there is some n0 ∈ N such that Mn+n0
≤ M ′

n and M ′
n+n0

≤ Mn

for all n ∈ N.

Proof. The conclusion is an equivalence relation, so it suffices so prove the case
M ′

n = anM .

On the one hand, anM ≤Mn by definition. On the other, there is some n0 ∈ N
such that Mn+1 = aMn for all n ≥ n0; then, for any n ∈ N, we have

Mn+n0
= anMn0

≤ anM.
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Let A be a ring and a ⊴ A. Set a0 = A; then A∗ =
⊕∞

n=0 a
n is a graded ring.

If M is an A-module with an a-filtration (Mn), then M
∗ =

⊕
nMn is a graded

A∗-module.

Suppose A is Noetherian; let a = (x1, . . . , xs). Then A∗ is generated as an
A-algebra by x̄1, . . . , x̄s, where x̄i is the image of xi in the a-entry of A∗:

x̄i = (0, xi, 0, 0, . . . ) ∈ A⊕ a⊕ a2 ⊕ a3 · · · = A∗.

By HBT, A∗ is Noetherian.

Lemma 4.48. Let A be a Noetherian ring, M a finitely generated A-module,
and Mn an a-filtration of M . Then TFAE:

(i) M∗ is a finitely generated A∗-module.

(ii) (Mn) is a-stable.

Proof. M is Noetherian (since it is finitely generated over a Noetherian ring),
so each Mn is finitely generated. Therefore each Qn :=

⊕n
i=1Mn is finitely

generated as an A-module; Qn is also a subgroup of M∗. The A∗-submodule of
M∗ generated by Qn is

M∗
n := A∗Qn =M0 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ . . .

ThenM∗
n is finitely generated over the Noetherian ring A∗, and so itself Noethe-

rian.

Now, the filtration (Mn) is a-stable iff the ascending chain (M∗
n) stabilises.

Indeed, by definition, this chain stabilises at n = k iff Mk+m = amMk for all
m ∈ N.

Suppose M∗ is finitely generated over A∗. Then M∗ is Noetherian, and so
(M∗

n) stabilises. Conversely, suppose (M∗
n) stabilises; since M∗ =

⋃
nM

∗
n, we

have M∗ =M∗
n0

for some n0 ∈ N. Then M∗ is finitely generated over A∗.

Proposition 4.49 (Artin-Rees theorem). Suppose A is Noetherian, a ⊴ A and
M is a finitely generated module over A with an stable a-filtration (Mn). Let
M ′ ≤M be an A-submodule. Then (Mn ∩M ′) is a stable a-filtration of M ′.

Proof. Write Kn :=Mn ∩M ′. We want to show Kn is a stable a-filtration.

Since aM ′ ⊆M ′ and aMn ⊆Mn+1, (Kn) is an a-filtration. It remains to show
it is stable.

Now, K =
⊕

nKn is a graded M∗-submodule of A∗. By the previous lemma,
M∗ is finitely generated over A∗ since (Mn) is a-stable. Since A

∗ is Noetherian
(as A is), K ≤ M∗ is finitely generated over A∗; applying the lemma again,
(Kn) is a-stable.

Definition 4.50. Let A be a ring, and let a ⊴ A. The associated graded
ring is

Ga(A) =

∞⊕
n=0

an

an+1
,
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where we again take a0 = A.

If M is an A-module and (Mn) an a-filtration,

G(M) =

∞⊕
n=0

Mn

Mn+1

is the associated graded module; it is a graded Ga(A)-module.

Proposition 4.51. Let A be a Noetherian ring with a ⊴ A. Then

(1) Ga(A) is a Noetherian ring.

(2) If M is a finitely generated A-module and (Mn) is a stable a-filtration, then
G(M) is a finitely generated graded Ga(A) module.

Proof.

(1) Since A is Noetherian, a = (x1, . . . , xs). As before, let x̄i be the image of
xi in the second entry of GaA. Then GaA is generated by the x̄i as an
A-algebra; by HBT, Ga(A) is Noetherian.

(2) There is some n0 ∈ N such that Mn0+r = arMn0 for all r ∈ N. Then G(M)
is generated as a Ga(A)-module by

⊕n0

n=0Mn.

Now, each quotientMn/Mn+1 is a Noetherian A-module (sinceMn is) which
is annihilated by a. Hence Mn/Mn+1 is finitely generated over A/a, and so⊕n0

n=0Mn is finitely generated over A/a. Hence G(M) is finitely generated
over Ga(A).

4.7 Dimension theory of local rings

Definition 4.52. Let R be a ring. An ideal I ⊴ R is primary if I ̸= R and
every zero divisor of R/I is nilpotent.

Let I ⊴ R be primary. Then
√
I := p is the smallest prime containing I; say that

I is p-primary. In particular,
√
· maps primary ideals to prime ones.

Let p ⊴ R be prime. Now, pk is not necessarily primary; if it is primary, then
it must be p-primary. Note that, for m ⊴ R maximal, mn is always m-primary.
Not every primary ideal arises as a prime power, however: the ring k[X,Y ] (k
a field) is a counterexample.

Let (A,m) be a Noetherian local ring. For a m-primary ideal q, let δ(q) be
the minimal cardinality of a generating set of q. We get three numbers from
A:

(1) dimA

(2) δ(A) = min{δ(q) | q ⊴ A m-primary}.

(3) d(Gm(A)); that is, the order of the pole of P (Gm(A), T ) at T = 1.

We will show that, in fact, these three values are all equal.
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Lemma 4.53. Let p ∈ Q[T ]. Then, for n ≥ 0, there is some q ∈ Q[T ] such
that

n−1∑
k=0

p(k) = q(n),

where the leading coefficient of q depends only on the leading coefficient of p,
and deg q = deg p+ 1 (where we take deg 0 = −∞).

Proof. Omitted.

Suppose f : Z → Z is equal to a polynomial g ∈ Q[T ] at sufficiently large
values. Since g is uniquely determined, we will talk about deg f , the leading
term/coefficient of f , and so on, without explicitly referring to g.

Proposition 4.54. Let (A,m) be a Noetherian local ring, and let q ⊴ A be m-
primary. Let M be a finitely generated A-module, and (Mn) a q-stable filtration.
Then

(1) l(Mn/Mn+1) <∞.

(2) For n sufficiently large, there are f, g ∈ Q[T ] such that l(Mn/Mn+1) = f(n)
and l(M/Mn) = g(n), and 1 + deg l(Mn/Mn+1)− deg l(M/Mn) ≤ δ(q).

(3) The leading terms of l(Mn/Mn+1) and l(M/Mn) depend only on A, m and
q; that is, they are independent of the choice of filtration.

Proof.

(1) Mn/Mn+1 is a finitely generated A/q-module. Now, A/q is Noetherian,
and has dimension 0: there are no prime ideals between q and m, and m is
maximal. Therefore A/q is Artinian. Hence Mn/Mn+1 is both Noetherian
and Artinian, and so it has finite length.

(2) By the proposition, Gq(M) is Noetherian. Then G(M) =
⊕

nMn/Mn+1

is a finitely generated Gq(A)-module. If x1, . . . , xs generate q, then their
(degree-1 homogeneous) images in the second entry ofGq(A) generateGq(A)
as a A/q-algebra. But then l(Mn/Mn+1) is equal to its Hilbert polynomial,
which has degree s− 1, for sufficiently large values of n. Since

l(M/Mn) =

n−1∑
k=0

l(Mk/Mk+1),

this is also eventually polynomial in n by the last lemma.

(3) Let (M ′
n) be another stable q-filtration of M , and let

g(n) = l(M/Mn) =

n−1∑
k=0

l(Mk/Mk+1)

and

f(n) = l(M/M ′
n) =

n−1∑
k=0

l(M ′
k/M

′
k+1).
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Then f and g are polynomials for sufficiently large values of n; by the last
lemma, their leading coefficients depend only on the leading coefficients of
l(Mk/Mk+1) and l(M

′
k/M

′
k+1), respectively.

But (Mn) and (M ′
n) have bounded differences; that is, there is some n0 ∈ N

such that, for all n, Mn+n0
≤ M ′

n and M ′
n+n0

≤ Mn. Therefore f and g
have the same growth rate: precisely,

g(n− n0) ≤ f(n) ≤ g(n+ n0) for n ∈ N.

Hence g and f must have the same degree and leading coefficient.

Corollary 4.55. Let (A,m) be a Noetherian local ring and q a m-primary ideal.
Then

(i) For sufficiently large n, l(qn/qn+1) is a polynomial of degree at most δ(q)−
1.

(ii) deg l(A/qn) = deg l(A/mn) and deg l(qn/qn+1) = deg l(mn/mn+1).

Proof.

(i) Apply the last proposition to M = A, with Mn = qn.

(ii) Since A is Noetherian and m =
√
q, we showed on the example sheet that

there is some r ∈ N such that mr ⊆ q ⊆ m. Therefore

l(m/mn) ≤ l(m/qn) ≤ l(m/mrn),

so
g′(n) ≤ g(n) ≤ g′(rn),

and hence deg l(m/qn) = deg l(m/mn).

Proposition 4.56. Let (A,m) be a Noetherian local ring. Then δ(A) ≥ d(Gm(A)).

Proof. Let q be an m-primary ideal of A generated by δ(A) elements. By the
corollary,

δ(A) = δ(q) ≥ l(qn/qn+1) + 1 = deg l(mn/mn+1) + 1 = d(Gm(A)).

Proposition 4.57. Let (A,m) be a Noetherian local ring. If x ∈ m is not a
zero divisor, then

d(Gm/x(A/(x))) < d(Gm(A)).

Proof. Since x is not a zero divisor, the map a→ xa is anA-module isomorphism
A → xA. Let A′ = A/(x) and m′ = m/(x). We get an exact sequence of A-
modules

xA
xA∩mn

A
mn

A′

m′n
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By additivity of l, we have

l

(
A′

m′n

)
= l

(
A

mn

)
− l
(

xA

xA ∩mn

)
.

Now, (mn) is a stablem-filtration ofA, so (xA∩m) is a stablem-filtration of xA ∼=
A. Therefore the degrees and leading terms of l(A/mn) and l(xA/(xA ∩ mn))
are equal, so their difference has strictly lower degree. Then

deg l

(
m′n

m′n−1

)
+ 1︸ ︷︷ ︸

d(Gm/x(A/(x)))

= deg l

(
A′

m′n

)
< deg l

(
A

mn

)
= deg l

(
mn

mn+1

)
+ 1︸ ︷︷ ︸

d(Gm/x(A/(x)))

.

Proposition 4.58. Let (A,m) be a Noetherian local ring. Then

d(Gm(A)) ≥ dimA.

Proof. Proceed by induction on d(Gm(A)). If d(Gm(A)) = 0, then, for n suffi-
ciently large, l(mn/mn+1) = 0, so mn = mn+1. By Nakayama’s lemma, mn = 0.
Sice A is Noetherian, it is Artinian. Therefore dimA = 0.

Now suppose d(Gm(A)) > 0. If dimA = 0, we are done; otherwise, take a
nontrivial strictly descending chain of primes pr ⊋ · · · ⊋ p0 (r ≥ 1). Now, A′ =
A/p0 is a Noetherian local integral domain with maximal ideal m′ = m/p0. Let
x ∈ p1 \ p0; then x′ = x+ p ̸= 0. By the last proposition, d(Gm′/(x)(A

′/(x))) <
dm′(A′).

We also have a surjectiveA-module homomorphismA/mn ↠ A′/m′n, so l(A/mn) ≥
l(A′/m′n); then deg(A/mn) ≥ deg(A′/m′n) and so d(Gm(A) ≥ Gm′(A′)). By the
proposition defining Hilbert polynomials, we get

d(Gm′/(x))

(
A′

(x)

)
< d(Gm(A)).

By induction, dimA′/(x) < d(Gm(A)). Since the images of the pi in A′/(x)
remain distinct, r − 1 ≤ d(Gm(A))− 1. Hence dimA ≤ d(Gm(A)).

Corollary 4.59. The dimension of a Noetherian local ring is finite.

Proposition 4.60. Let (A,m) be a Noetherian local ring. Then

dimA ≥ δ(A).

Proof. Let d = dimA. We want to show A contains an m-primary ideal gener-
ated by (at least) d elements.

We construct x1, . . . , xi ∈ m such that every prime ideal containing all of the xi
has height at least i. The i = 0 case is trivial; suppose i ≤ d, and x1, . . . , xi−1

have been constructed.

Claim: Let I ⊴ B, where B is Noetherian. Then there are finitely many prime
ideals of B minimal over I.
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Indeed, consider nilB/I. This is a finite intersection
⋂

i pi of primes (exercise);
by correspondence, every prime in R that is minimal over I descends to one of
the pi.

There are therefore only finitely many prime ideals p1, . . . , ps of height i − 1
containing {x1, . . . , xi−1}. Indeed, every such prime ideal is minimal among
those containing (x1, . . . , xi−1). Now, by maximality, m has height d; since
i− 1 < d, we must have m ̸= pi for all i. By prime avoidance, m ̸⊆

⋃s
j=1 pj , so

find xi ∈ m \
⋃

j pj .

Let q be a prime ideal containing (x1, . . . , xi), and let p be minimal among
prime ideals between (x1, . . . , xi) and q. If p = pj for some 1 ≤ j ≤ s, we have
xi ∈ q \ p, so q ⊋ p; then

ht q > ht p = i− 1.

Otherwise, by induction we have

ht q ≥ ht p ≥ i.

In any case, ht q ≥ i.

Then consider √
(x1, . . . , xd) =

⋂
p∈SpecA

(x1,...,xd)∈p

p = m,

since the only prime of height at least d is m.

Proposition 4.61 (Krull’s height theorem). Let A be a Noetherian ring, and
let x1, . . . , xr ∈ A. Then every minimal prime p containing a = (x1, . . . , xr) has
height at most r.

Proof. We localise at p. Now, pe is the unique prime ideal containing ae, so√
ae = pe (since Ap is Noetherian). Therefore ae is pe-primary. Then

ae =
(x1
1
, . . . ,

xr
1

)
,

so ht p = dimAp = δ(Ap) ≤ δ(pe) ≤ r.

5 Tensor products and flatness

5.1 Tensor products

Let A be a ring, and suppose M and N are A-modules. Their tensor product
M ⊗ N is the A-module of finite sums of formal products m ⊗ n, constrained
by A-linearity. We will make this precise soon, but first we will look at an
example.

Example 5.1. Let A = Z. Then Z/2Z⊗ Z/3Z = 0. Indeed,

a⊗ b = (3a)⊗ b = a⊗ (3b) = a⊗ 0 = 0

Example 5.2. Let A = k be a field. If V and W are k-vector spaces, then
V ⊗W is a vector space of dimension dimV · dimW .
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Definition 5.3. For A-modulesM ,N and L, an A-bilinear map f :M×N → L
is a map such that f(m,−) : N → L and f(−, n) : M → L are A-linear for all
m ∈M and n ∈ N .

Let A be a ring, and let S be a set. Write

A
⊕

S =
⊕
s∈S

A · s =

{
l∑

i=1

as · s | l ≥ 0, as ∈ A

}
.

Definition 5.4. Let M and N be A-modules. Their tensor product is

M ⊗N =
A⊗M×N

K
,

where K is the A-submodule generated by

� (m1, n) + (m2, n)− (m1 +m2, n) for each m1,m2 ∈M and n ∈ N .

� (m,n1) + (m,n2)− (m,n1 + n2) for each m ∈M and n1, n2 ∈ N .

� a(m,n) − (am, n) and a(m,n) − (m, an) for each m ∈ M , n ∈ N and
a ∈ A.

The image of 1(m,n) in M ⊗N is written m⊗ n.

We have a natural A-bilinear map

ιM⊗N :M ×N →M ⊗N
(m,n)→ m⊗ n.

Proposition 5.5 (Universal property of the tensor product). For every A-
module L and A-bilinear map f : M × N → L, there is a unique A-module
homomorphism h :M ⊗N → L such that f = h ◦ iM⊗N .

M ×N M ⊗N

L

ιM⊗N

f ∃!h

Proof. Suppose such a map h exists. Then f(m,n) = h(m ⊗ n), so h is deter-
mined by im ιM⊗N , which generates M ⊗N . Thus we have uniqueness.

For existence, consider the A-linear map h̃ : A
⊕

M×N → L given on a basis by
h̃(1 · (m,n)) = f(m,n). Since f is bilinear, it maps K → 0, so h̃ descends to a
linear map h :M ⊗N → L. By construction,

h(m⊗ n) = h̃(1(m,n)) = f(m,n).

As with localisation, the tensor product – precisely, the pair (M ⊗N, ιM⊗N ) –
is determined up to unique isomorphism by this universal property.

Showing that an element in a particular tensor product doesn’t vanish might
seem difficult. The next proposition provides a way of doing this.
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Proposition 5.6. Consider x =
∑l

i=1mi ⊗ ni ∈ M ⊗ N . Then x ̸= 0 iff
there is some A-module L and A-bilinear map f : M × N → L such that∑l

i=1 f(mi, ni) ̸= 0.

Proof. Suppose x = 0, and let f : M × N → L be an A-bilinear map. By the
universal property, f = h ◦ ιM⊗N for some A-linear map h :M ⊗N → L. Then

l∑
i=1

f(m,n) =

l∑
i=1

h(mi ⊗ ni) = h(0) = 0.

Conversely, suppose x ̸= 0. Let L =M ⊗N and f = ιM⊗N ; then

0 ̸= x =

l∑
i=1

ιM⊗N (mi, ni).

Example 5.7. Let A = Z, and consider 2⊗ 1 ∈ Z⊗ Z/2Z. Then

2⊗ 1 = 1⊗ 2 = 1⊗ 0 = 0.

However, consider 2 ⊗ 1 ∈ 2Z ⊗ Z/2Z. Then in fact 2 ⊗ 1 ̸= 0. Indeed, let
L = Z/2Z, and map

b : 2Z⊗ Z/2Z→ Z/2Z
(2n, x+ 2Z)→ nx+ 2Z.

Then b(2⊗ 1) = 1 ̸= 0.

This example shows that tensor products of submodules do not embed.

Proposition 5.8. If
∑

imi⊗ni = 0 in M⊗N , then there are finitely-generated
submodules M ′ ≤M , N ′ ≤ N such that

∑
imi ⊗ ni = 0 in M ′ ⊗N ′.

Proof. Exercise. Intuitively, the relation making the sum vanish only uses
finitely many element of M and N .

Proposition 5.9. There are natural isomorphisms

(i)

M ⊗N ≃−−→ N ⊗M

m⊗ n −−→ n⊗m.

(ii)

(M ⊗N)⊗ P ≃−−→M ⊗ (N ⊗ P ) :=M ⊗N ⊗ P

(m⊗ n)⊗ p −−→ m⊗ (n⊗ p)
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(iii) (⊕
i∈I

Mi

)
⊗ P ≃−−→

⊕
i∈I

(Mi ⊗ P )

(mi ⊗ p) −−→ (mi ⊗ p)

(iv)

A⊗M ≃−−→M

(a,m) −−→ am.

(v) Let M ′ ≤M and N ′ ≤ N be submodules. Then

M

M ′ ⊗
N

N ′
≃−−→ M ⊗N

L

m⊗ n −−→ m⊗ n,

where

L = spanA ({m′ ⊗ n | (m′, n) ∈M ′ ×N} ∪ {m⊗ n′ | (m,n′) ∈M ×N ′}) .

Proof. Omitted: easy but tedious check.

Example 5.10. Let V , W be vector spaces over k, with bases B and C respec-
tively. Then V ⊗W is a k-vector space with basis

{b⊗ c | b ∈ B, c ∈ C}.

In particular, dim(V ⊗W ) = dimV · dimW .

5.2 Extension of scalars

Let f : A→ B be a ring homomorphism.

Definition 5.11. Let M be a B-module. Then M is an A-module via

a ·m := f(a) ·m.

This is called restriction of scalars from B to A. We have a dual notion, called
extension of scalars from A to B.

Definition 5.12. Let N be an A-module. View B as an A-module; then the
tensor product NB := B ⊗A N is a B-module via

b0(b⊗ n) = (b0b)⊗ n.

Indeed, this multiplication arises from descending the A-bilinear maps

B ×N → B ⊗A N

(b, n)→ (b0b, n)
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to maps hb0 : B ⊗A N → B ⊗A N . The map

B → EndZ(B ⊗A N)

b0 → hb0

is then a ring homomorphism.

Example 5.13. Consider the inclusion R ↪→ C. We have

C⊗R Rn ∼= Cn.

Example 5.14. Let A be a ring, S a set, andM = A
⊕

S/K for some submodule
K. Let f : A→ B be a ring homomorphism. We have

(A
⊕

S)B = B ⊗A A
⊕

S ∼= (B ⊗A A)
⊕

S ∼= B
⊕

S ;

this maps b⊗ v → bf(v), where f acts coordinate-wise.

Then

MB =

(
A

⊕
S

K

)
B

=
B

0
⊗A

A
⊕

S

K
∼=

B ⊗A A
⊕

S

{b⊗ k | b ∈ B, k ∈ K}
∼=

B
⊕

S

spanB f(K)
,

where f acts coordinate-wise on K.

In particular, if M is finitely generated (as an A-module), then so is MB (as a
B-module).

Now suppose B and C be A-algebras. Then B ⊗A C is in fact a ring via the
multiplication

(b1 ⊗ c1)(b2 ⊗ c2) = (b1b2)⊗ (c1c2).

This is well defined. Indeed, fix b1 ∈ B and c1 ∈ C; then the map

B × C → B ⊗ C
(b, c)→ (b1b)⊗ (c1c)

is bilinear, and gives rise to the multiplication above, so multiplication is linear;
it is then easy to check it is a ring multiplication.

Now, B⊗C is a B- and a C- algebra via b→ b⊗ 1 and c→ 1⊗ c. Then B⊗C
is an A-algebra in two ways: A → B → B ⊗ C and A → C → B ⊗ C. By
construction, these ways coincide.

Example 5.15. We can change the base ring of an algebra. Let k ⊆ L be
an extension of fields, and let A = k[T1, . . . , Tn]/I. Then AL = L ⊗k A =
L[T1, . . . , Tn]/I

e. Note that, if I = (f1, . . . , fs), then also Ie = (f1, . . . , fs), so
the tensor product has the same relations.

Tensor products are functorial: given maps f : M → N and g : P → Q of
modules over a ring A, define

f ⊗ g :M ⊗ P → N ⊗Q
m⊗ p→ f(m)⊗ g(p).

This is an A-module homomorphism.
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5.3 Flat modules

Proposition 5.16. For an exact sequence

M ′ M M ′′ 0
f g

of A-modules, and an A-module N , the sequence

M ′ ⊗N M ⊗N M ′′ ⊗N 0
f⊗IdN g⊗IdN

is exact.

Proof. Since g is surjective, so is g ⊗ IdN : indeed, its image contains all pure
tensors.

Now, g ◦ f = 0, so

(g ⊗ IdN ) ◦ (f ⊗ IdN ) = (g ◦ f)⊗ IdN = 0⊗ IdN = 0.

Hence L := im(f ⊗ IdN ) ⊆ ker(g ⊗ IdN ). Now consider

φ :
M ⊗N
L

→M ′′ ⊗N

x+ L→ (g ⊗ IdN )(x).

Further, the bilinear map

M ×N → M ⊗N
L

m⊗ n+ L

vanishes on f(M ′) × N , so it descends to a bilinear map M/f(M ′) × N →
(M ⊗N)/L. But M/f(M ′) ∼=M ′′, so we get a bilinear map

M ′′ ×N → M ⊗N
L

(g(m), n)→ m⊗ n+ L.

By the universal property, we get a map

ψ :M ′′ ⊗N&to
M ⊗N
L

g(m)⊗ n→ m⊗ n+ L.

Evaluating on pure tensors, we see φ and ψ are inverses. Fix x ∈ ker(g ⊗ IdN );
then

x+ L = ψ(φ(x+ L)) = ψ((g ⊗ IdN )x︸ ︷︷ ︸
=0

) = 0 + L.

Hence x ∈ L = im(f ⊗ IdN ).
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Note that, if M ′ → M → M ′′ is exact, then M ′ ⊗ N → M ⊗ N → M ′′ ⊗ N
might not be. For example, consider

0 Z Z·2

and tensor with Z/2Z. We get

0 Z⊗ Z
2Z Z⊗ Z

2Z
·2

Since the map is not injective, the sequence is not exact.

Definition 5.17. An A-module N is flat if, for all injections f : M1 ↪→M2 of
A-modules, the map f ⊗ IdN :M1 ⊗N →M2 ⊗N is also injective.

Examples 5.18.

1. Free A-modules are flat: under the isomorphisms Mi ⊗ A
⊕

S ∼= M
⊕

S
i ,

f ⊗ IdA
⊕

S just becomes f applied component-wise.

2. Projective A-modules are flat. These are A-modules N1 such that the sum
N1 ⊕N2

∼= A
⊕

S is free for some A-module N2.

Indeed,

M1 ⊗ (N1 ⊕N2)
f⊗Id−−−→M2 ⊗ (N1 ⊕N2)

is injective, so

(M1 ⊗N1)⊕ (M1 ⊗N2)
(f⊗Id)⊕(f⊗Id)−−−−−−−−−−→ (M2 ⊗N1)⊕ (M2 ⊗N2)

is injective. Thus N1 is flat.

Suppose x ∈ A is not a zero divisor; then the map A
·x−→ A is injective. Let M

be a flat A-module; applying the isomorphism M ∼= A⊕A M , we see M
·x−→M

is injective. Hence M is torsion-free.

5.4 The Tor functor

We will now meet some homological algebra.

Definition 5.19. Let M and N be modules over a ring A. A free resolution
for N is an exact sequence

. . . F1 F0 N

where each Fi is a free A-module. Then let TorAi (M,N) be the ith homology
group of the chain complex below (a chain complex is a sequence of A-modules
such that the composition of each pair of adjacent transition maps is 0).

. . . M ⊗A F1 M ⊗A F0 0

Explicitly,

TorAi (M,N) =
ker(M ⊗A Fi →M ⊗A Fi−1)

im(M ⊗A Fi+1 →M ⊗A Fi)
.
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We can omit A from the notation, writing Tori(M,N). Free resolutions always
exist, and the groups TorAi (M,N) are independent of the choice of resolution.
We also have Tori(M,N) ∼= Tori(N,M). We will not prove any of these facts,
but they are in any book on homological algebra.

Examples 5.20.

(i) By right exactness, TorA0 (M,N) =M ⊗A N .

(ii) Suppose x ∈ A is not a zero divisor. Then A/(x) has a free resolution

. . . 0 A A A/(x)·x

Let M be an A-module; we can then compute

Tori

(
A

x
,N

)
=


N
xN i = 0

(0 :N x) i = 1

0 i > 1

 .

Here, (0 :N x) = {x ∈ N | xn = 0}.

Take a SES of A-modules

N ′ N N ′′

and free resolutions
F ′
1 F ′

0 N ′

F ′′
1 F ′′

0 N ′′

Then Fi = F ′
i ⊕ F ′′

i yields a free resolution for N . The diagram below then
commutes, with exact rows and columns.

N ′ N N ′′

F ′
0 F0 F ′′

0

F ′
1 F1 F ′′

1

...
...

...

Tensoring with M , we get a commutative diagram with exact rows (by right
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exactness); each column remains a chain complex.

N ′ ⊗M N ⊗M N ′′ ⊗M

F ′
0 ⊗M F0 ⊗M F ′′

0 ⊗M

F ′
1 ⊗M F1 ⊗M F ′′

1 ⊗M

...
...

...

This naturally induces an exact sequence

Tori(M,N ′)→ Tori(M,N)→ Tori(M,N ′′);

we also get a connecting homomorphism ∂i : Tori(M,N ′′) → Tori−1(M,N ′)
which gives a LES

. . . Tori(M,N ′) Tori(M,N) Tori(M,N ′′)

Tori−1(M,N ′) Tori−1(M,N) Tori−1(M,N ′′) . . .

∂i+1

∂i−1

∂i

We construct the connecting maps by doing the only sensible thing possible at
each step to traverse the previous diagram.

This sequence ends

· · · → N ′ ⊗M → N ⊗M ↠ N ′′ ⊗M.

Recall that, since − ⊗M is not left exact, the map N ′ ⊗M → N ⊗M need
not be injective. The connecting maps ∂i allow us to instead continue the exact
sequence to the left indefinitely.

Lemma 5.21. Let I ⊴ A. The natural map I ⊗A M → A ⊗A M ∼= M is
injective iff Tor1(A/I,M) = 0.

Proof. We have a SES I ↪→ A↠ A/I; the induced LES on Tor is

· · · → Tor1(A,M)→ Tor1(A/I,M)→ I ⊗M → A⊗M ↠ A/I ⊗M.

Using the free resolution 0 → A ↠ A, we can compute that Tor1(A,M) = 0.
Therefore I ⊗M → A⊗M is injective iff the injection Tor1(A/I,M) ↪→ I ⊗M
is zero.

We now apply these ideas to flatness.

Proposition 5.22. An A-module M is flat iff, for every finitely generated ideal
I ⊴ A, the natural map ιI : I ⊗A M →M is injective.
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Proof.
⇒: Apply flatness to I ↪→ A.

⇐: Suppose ιI is injective for any finitely generated I.

Claim 1: The natural map ιJ : J ⊗A M →M is injective for any ideal J ⊴ A.

Indeed, take x =
∑k

i=1 ji ⊗ mi ∈ ker ιJ , so that
∑

i jimi = 0 ∈ M . Let
I = (j1, . . . , jk); then x ∈ ker ιI . Since I is finitely generated, by assumption
x = 0. Hence ιJ is injective.

Now let N ′ ↪→ N be an inclusion of A-modules. Identifying N ′ with its image
in N , we can assume that N ′ ≤ N . Let ι : N ′⊗AM → N ⊗AM be the natural
map.

Claim 2: If N ′/N is cyclic, then ι is injective.

Let N/N ′ = xA. Since the map A
·x−→ N/N ′ is surjective, we have N/N ′ ∼= A/J

for some J ⊴ A. Now, consider the exact sequence

Tor1(N/N
′,M) N ′ ⊗A M N ⊗A M

ι

Then Tor1(N/N
′,M) ∼= Tor1(A/J,M); by the last lemma and claim 1, Tor1(A/J,M) =

0, and so ι is injective by exactness.

Claim 3: If N ′/N is finitely generated, then ι is injective.

We have a filtration

N ′ = N0 ≤ N1 ≤ · · · ≤ Nm = N

with each successive quotient Ni+1/Ni cyclic. By claim 2, the natural maps
Ni ⊗A M → Ni+1 ⊗A M are all injective. Therefore their composition ι is
injective.

We have now done enough prove the result in general. Indeed, suppose

x ∈
k∑

i=1

n′i ⊗mi ∈ ker ι.

As in claim 1, we restrict ι to the finitely generated module n′1A + · · · + n′kA;
by claim 3, x = 0. Hence ι is injective.

6 Discrete Valuation Rings

Definition 6.1. Let K be a field. A (normalised) discrete valuation on
K is a surjective group homomorphism v : K× → Z such that v(x + y) ≥
min{v(x), v(y)}.

By convention, write v(0) =∞.

Definition 6.2. Let v be a discrete valuation on a field K. Its valuation ring
is

OK = {x ∈ K | v(x) ≥ 0}.

Such a ring is called a discrete valuation ring (DVR).
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Note that FracOK = K.

Example 6.3. Let p ∈ Z be prime. Write x ∈ Q as x = pk a
b for a, b ∤ p; then

v(x) = k is a discrete valuation on Q with valuation ring OK = Z(p).

Proposition 6.4. Every DVR A is a local PID.

Proof. Let the associated field and valuation be K and v.

Take nonzero elements x, y ∈ A. Since v(x−1) = −v(x), we have that x ∈ A×

iff v(x) = 0. Therefore, v(x) = v(y) iff v(xy−1) = 0, iff x, y are associate.

Since v : K → Z is surjective, there is some π ∈ A with v(π) = 1. This is called
a uniformiser of A. Observe that x ∼ πv(x) (they are associate).

Claim: The nonzero ideals of A are exactly (πk) (k ∈ N).

Indeed, let a ⊴ A be nonzero. Let l = min v(a), and find y ∈ a such that
v(y) = l; then y ∼ πl, so πl ∈ a. If x ∈ a, then v(x) ≥ l, so

x ∼ πv(x) = πv(x)−lπl,

and so x ∈ (πl). Hence a = (πl).

Therefore A is a PID with unique maximal ideal (π).

The converse is also true: let K = FracA, and let v(uπk) = k, where u ∈ A×.
It is easy to check that all elements of K× are of this form, and that v is indeed
a valuation on K.
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